
Ethereum Alarm Clock Documentation
Release 1.0.0

Piper Merriam

October 23, 2015

Contents

1 Overview 3
1.1 Scheduling Function Calls . 3
1.2 Execution of scheduled calls . 4
1.3 Guarantees . 4

2 Account Managment 5
2.1 Checking account balance . 5
2.2 Depositing funds . 5
2.3 Withdrawing funds . 6

3 Authorization 7
3.1 Differentiating calls . 7
3.2 Checking authorization status . 7
3.3 Managing Authorization . 8

4 Scheduling 11
4.1 Registering Call Data . 11
4.2 Scheduling the Call . 11
4.3 Cancelling a call . 13

5 Caller Pool 15
5.1 Caller Bonding . 15
5.2 Bond Forfeiture . 16
5.3 About Pools . 16
5.4 Entering the Pool . 16
5.5 Exiting the Pool . 17

6 Call Execution 19
6.1 Executing a call . 19
6.2 Determining what scheduled calls are next . 20
6.3 Designated Callers . 20
6.4 Safeguards . 21
6.5 Tips for executing scheduled calls . 21

7 Call pricing and fees 23
7.1 Minimum Balance . 23
7.2 Call Fees and Caller Payment . 23
7.3 Overhead . 24

i

8 Contract ABI 25
8.1 Abstract Solidity Contracts . 25

9 Caller Pool API 27
9.1 Bond Management . 27
9.2 Call Scheduling and Execution . 28
9.3 Pool Information . 28
9.4 Pool Membership . 29
9.5 Entering and Exiting Pools . 30

10 Scheduled Call API 31
10.1 Properties of a Scheduled Call . 31

11 Events 37
11.1 Alarm Events . 37

12 Changelog 39
12.1 0.4.0 . 39
12.2 0.3.0 . 39
12.3 0.2.0 . 39
12.4 0.1.0 . 39

ii

Ethereum Alarm Clock Documentation, Release 1.0.0

The Ethereum Alarm Clock is a service that allows scheduling of contract function calls at a specified block number
in the future. These scheduled calls are then executed by other nodes on the ethereum network who are reimbursed for
their gas costs plus a small payment for the transaction.

Contents:

Contents 1

Ethereum Alarm Clock Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Overview

The Ethereum Alarm service is a contract on the ethereum network that facilitates scheduling of function calls for a
specified block in the future. It is designed to require little or no trust between any of the users of the service, as well
as providing no special access to the creator of the contract.

1.1 Scheduling Function Calls

When a contract, or individual wants to schedule a function call with the Alarm service it will perform the following
steps.

1. Ensure that the account that is scheduling the call has a sufficient balance to pay for the scheduled call.

2. Register any call data that will be required to make the function call.

3. Schedule the function call with the service.

1.1.1 Account Balance

The Alarm service operates under a scheduler pays model meaning that the address which schedules the function call
is required to pay for it. When a call is executed, the initial gas cost is paid for by the ethereum address that sends the
executing transaction. This address needs to be reimbursed this gas cost plus a small fee. The Alarm service requires
this payment up front in the form of an account balance.

The Alarm service maintains accounts for each address on the network. These accounts can have ether deposited and
withdrawn at any time. However, at the time the call is executed, if the scheduler’s account does not have enough
funds to pay for the execution of the scheduled call, it will be skipped.

1.1.2 Registering Call Data

The Alarm service is not aware of the function ABI for the calls it executes. Instead, it uses the function ABI signature
and raw call data to execute the function call.

To do this, any data that needs to be used in the call must be registered prior to scheduling the call. Call data only
needs to be registered once, and can be re-used for subsequent function calls.

1.1.3 Call Scheduling

Function calls can be scheduled for any block at least 40 blocks (~10 minutes) in the future. Scheduling is done by
providing the Alarm service with the following information:

3

Ethereum Alarm Clock Documentation, Release 1.0.0

1. Contract address the call should be executed on.

2. ABI signature of the function that should be called.

3. SHA3 hash of the call data that should be included in the function call.

4. Target block number that the call should be executed on.

5. Number of blocks after the target block during which it still ok to execute the call. (between 64 - 255 blocks)

6. A nonce to allow differentiation between identical calls that are scheduled for the same block.

Once scheduled, the call waits to be picked up and executed at the desired block.

1.2 Execution of scheduled calls

Scheduled function calls can ultimately be executed by anyone who wishes to initiate the transaction. This will likely
be an automated process that monitors for upcoming scheduled calls and executes them at the appropriate block.

1.2.1 Usage Fees

A scheduled function call costs approximately 102% of the total gas expenditure for the transaction in which it was
executed.

The additional 2% is split evenly between paying the account which executed the function call and the creator of the
Alarm service for the many many hours spent creating it.

1.3 Guarantees

1.3.1 Will the call happen?

There are no guarantees that your function will be called. The design of this service is meant to provide the proper
motivation for calls to be executed, but it is entirely possible that certain calls will be missed due to unforseen circum-
stances.

1.3.2 Will I get paid for executing a call?

If you are diligent about how you go about executing scheduled calls then executing scheduled calls is guaranteed to
be profitable. See the section on executing calls for more information.

4 Chapter 1. Overview

CHAPTER 2

Account Managment

The scheduler pays system requires that payment for scheduled calls be provided prior to the execution of the call, so
that the sender of the executing transaction can immediately be reimbursed for the gas costs.

The account and associated funds are used to pay for any calls scheduled by that address. Inturn, each ethereum
address may withdraw or deposit funds in its account at any time with no restrictions.

It is also possible to deposit funds in the account of another address. You cannot however withdraw funds from any
address other than your own.

2.1 Checking account balance

Your account balance can be checked by accessing the public mapping of accounts to balances.

• Solidity Function Signature: getAccountBalance(address accountAddress) returns
(uint)

• ABI Signature: 0x93423e9c

Calling this function will return the balance in wei for the provided address.

2.2 Depositing funds

Depositing funds can be done one of a few ways.

2.2.1 By sending ether

The simplest way to add funds to your account is to just send the ether to the address of the alarm service. Any funds
sent to the alarm service are added to the account balance of the sender.

Warning: Contracts cannot add funds to their accounts this way using the send function on addresses. This is
due to solidity’s protection against unbounded gas use in contract fallback functions. See below for how contracts
can add their own funds.

Here is how you would do this from the geth javascript console.

The above would deposit 100 wei in the account of whatever address you used for the from value in the transaction.

5

Ethereum Alarm Clock Documentation, Release 1.0.0

2.2.2 By using the deposit function

Funds can also be deposited in a specific account by calling the deposit function and sending the desired deposit
value with the transaction.

• Solidity Function Signature: deposit(address accountAddress)

• ABI Signature: 0xf340fa01

Or to deposit into the address that sends the transaction.

• Solidity Function Signature: deposit()

• ABI Signature: 0xd0e30db0

2.2.3 Sending from a contract

Contracts can deposit funds through these mechanisms as well.

Or, if you would like your contract to deposit funds in the account of another address.

Note: It should be pointed out that you cannot deposit funds by calling alarmAddress.send(value). By
default in solidity, this transaction is sent with only enough gas to execute the funds transfer, and the fallback function
on the Alarm service requires a bit more gas so that it can record the increase in account balance.

2.3 Withdrawing funds

Withdrawing funds is restricted to the address they are associated with. This is done by calling the withdraw function
on the Alarm service.

• Solidity Function Signature: withdraw(uint value)

• ABI Signature: 2e1a7d4d

If the account has a balance sufficient to fulfill the request, the amount specified specified in wei will be transferred to
msg.sender.

6 Chapter 2. Account Managment

CHAPTER 3

Authorization

Scheduled calls can be considered either authorized or unauthorized.

An authorized call is one for which either scheduledBy == targetAddress or for which the scheduledBy
address has been granted explicit authorization by targetAddress to schedule calls.

An unauthorized call is one for which scheduledBy != targetAddress and the scheduledBy address
has not been granted authorization to schedule calls.

Note: Any address can still schedule calls towards any other address. The authorization status only effects which
address the calls originate from, not whether they will be executed.

3.1 Differentiating calls

When the Alarm service executes calls, they will come from one of two addresses depending on whether the call is
considered authorized or unauthorized. These addresses will sometimes be referred to as relays, as they relay the
actually function call for the Alarm service, allowing the callee to differentiate between authorized and unauthorized
calls.

Note: A call’s authorization state is determined at the time of execution.

authorized calls will orignate from the address returned by the authorizedAddress function.

• Solidity Function Signature: authorizedAddress() returns (address)

• ABI Signature: 0x5539d400

unauthorized calls will orignate from the address returned by the unauthorizedAddress function.

• Solidity Function Signature: unauthorizedAddress() returns (address)

• ABI Signature: 0x94d2b21b

3.2 Checking authorization status

When a function is called on a contract, it can check whether or not it is authorized by checking which of the two relay
addresses matches msg.sender.

To do this, our contract needs to be at least partially aware of the Alarm ABI function signatures which can be done
easily with an abstract contract.

7

Ethereum Alarm Clock Documentation, Release 1.0.0

Consider the idea of a contract which holds onto funds until a specified future block at which point it suicides sending
all of the funds to the trustee.

contract AlarmAPI {
function authorizedAddress() returns (address);
function unauthorizedAddress() returns (address);

}

contract TrustFund {
address trustee = 0x...;
address _alarm = 0x...;

function releaseFunds() public {
AlarmAPI alarm = AlarmAPI(_alarm);
if (msg.sender == alarm.authorizedAddress()) {

suicide(trustee);
}

}
}

In the above example, the TrustFund.releaseFunds function checks whether the incoming call is from the
authorized alarm address before suiciding and releasing the funds.

Note: It should be noted that the above example would require authorization to have been setup by the TrustFund
contract via some mechanism like a contract constructor.

3.3 Managing Authorization

It is the sole responsibility of the contract to manage address authorizations, as the functions surrounding authorization
use msg.sender as the contractAddress value.

3.3.1 Granting Authorization

Authorization is granted with the addAuthorization function.

• Solidity Function Signature: addAuthorization(address schedulerAddress)

• ABI Signature: 0x35b28153

This function adds the schedulerAddress address to the authorized addresses for msg.sender.

Here is how a solidity contract could grant access to it’s creator.

contract Example {
address alarm = 0x....;

function Example() {
alarm.call(bytes4(sha3("addAuthorization(address)")), msg.sender);

}
}

Upon creation, the Example contract adds it’s creator as an authorized scheduler with the alarm service.

8 Chapter 3. Authorization

Ethereum Alarm Clock Documentation, Release 1.0.0

3.3.2 Checking Access

You can check whether an address has authorization to schedule calls for a given address with the
checkAuthorization function.

• Solidity Function Signature: checkAuthorization(address schedulerAddress, address
contractAddress) returns (bool)

• ABI Signature: 0x685c234a

3.3.3 Removing Authorization

A contract can remove authorization from a given address using the removeAuthorization function.

• Solidity Function Signature: removeAuthorization(address schedulerAddress)

• ABI Signature: 0x94f3f81d

contract MemberRoster {
address alarm = 0x....;

mapping (address => bool) members;

function removeMember(address memberAddress) {
members[memberAddress] = false;

alarm.call(bytes4(sha3("removeAuthorization(address)")), memberAddress);
}

}

In the example above we are looking at part of a contract that manages the membership for an organization of some
sort. Upon removing a member from the organization, the MemberRoster contract also removes their authorization
status for scheduled calls.

3.3. Managing Authorization 9

Ethereum Alarm Clock Documentation, Release 1.0.0

10 Chapter 3. Authorization

CHAPTER 4

Scheduling

Call scheduling is the core of the Ethereum Alarm Service. Calls can be scheduled on any block at least 40 blocks
(~10 minutes) in the future.

4.1 Registering Call Data

If a function call requires arguments, then prior to scheduling the call, the call data for those arguments must be
registered. This is done with the registerData function.

• Solidity Function Signature: registerData()

• ABI Signature: 0xb0f07e44

It may be confusing at first to see that this function does not take any arguments, yet it is responsible for recording
the call data for a future function call. Internally, the registerData function pulls the call data off of msg.data,
effectively allowing any number and type of arguments to be passed to it (like the sha3 function).

In solidity, this would look something like the following.

Upon receiving this call, the Alarm service strips off the first four bytes from msg.data to remove the ABI function
signature and then stores the full call data.

Call data only ever needs to be registered once after which it can be used without needing to re-register it.

The registerData function cannot be used via an abstract contract in solidity, as solidity has not mechanism to
allow for variadic arguments in a function call. You can however, simplify some of your contract code with a local
alias on your contract that handles the call logic for you.

You can implement as many local registerData functions as you need with each argument pattern that you need
to schedule data for, allowing for simple data registration.

4.2 Scheduling the Call

Function calls are scheduled with the scheduleCall function on the Alarm service.

• Solidity Function Signature: scheduleCall(address contractAddress, bytes4
signature, bytes32 dataHash, uint targetBlock, uint8 gracePeriod, uint
nonce);

• ABI Signature: 0x52afbc33

The scheduleCall function takes the following parameters:

11

Ethereum Alarm Clock Documentation, Release 1.0.0

• address contractAddress: The contract address that the function should be called on.

• bytes4 abiSignature: The 4 byte ABI function signature for the call.

• bytes32 dataHash: The sha3 hash of the call data for the call.

• uint targetBlock: The block number the call should be executed on.

• uint8 gracePeriod: The number of blocks after targetBlock that it is ok to still execute this call.

• uint nonce: Number to allow for differentiating a call from another one which has the exact same information
for all other user specified fields.

Note: Prior to scheduling a function call, any call data necessary for the call must have already been registered.

The scheduleCall function has two alternate invocation formats that can be used as well.

• Solidity Function Signature: scheduleCall(address contractAddress, bytes4
abiSignature, bytes32 dataHash, uint targetBlock, uint8 gracePeriod)
public

• ABI Signature: 0x1145a20f

When invoked this way, the nonce argument is defaulted to 0.

• Solidity Function Signature: scheduleCall(address contractAddress, bytes4
abiSignature, bytes32 dataHash, uint256 targetBlock) public

• ABI Signature: 0xf828c3fa

When invoked this way, the gracePeriod argument is defaulted to 255 and then nonce set to 0.

4.2.1 Contract scheduling its own call

Contracts can take care of their own call scheduling.

In this example Lottery contract, every time the beginLottery function is called, a call to the pickWinner
function is scheduled for approximately 24 hours later (5760 blocks).

4.2.2 Scheduling a call for a contract

Alternatively, calls can be scheduled to be executed on other contracts

Note: The Alarm service operates under a scheduler pays model meaning that payment for all executed calls is taken
from the scheduler’s account.

Lets look at an example where we want to schedule a funds transfer for a wallet contract of some sort.

Note: This example assuming that you have the Alarm contract ABI loaded into a web3 contract object.

// First register the call data
// 0xb0f07e44 is the ABI signature for the `registerData` function.
> callData = ... // the full ABI encoded call data for the call we want to schedule.
> web3.sendTransaction({to: alarm.address, data: 'b0f07e44' + callData, from: eth.coinbase})
// Now schedule the call
> dataHash = eth.sha3(callData)
> signature = ... // the 4-byte ABI function signature for the wallet function that transfers funds.

12 Chapter 4. Scheduling

Ethereum Alarm Clock Documentation, Release 1.0.0

> targetBlock = eth.getBlock('latest') + 100 // 100 blocks in the future.
> alarm.scheduleCall.sendTransaction(walletAddress, signature, dataHash, targetBlock, 255, 0, {from: eth.coinbase})

There is a lot going on in this example so lets look at it line by line.

1. callData = ...

Our wallet contract will likely take some function arguments when transferring funds, such as the
amount to be transferred. This variable would need to be populated with the ABI encoded call data
for this function.

2. web3.sendTransaction({to: alarm.address, data: ’b0f07e44’ + callData,
from: eth.coinbase})

Here we are registering the call data with the Alarm service. b0f07e44 is the ABI encoded call
signature for the registerData function on the alarm service.

3. dataHash = eth.sha3(callData)

Here we compute the sha3 hash of the call data we will want sent with the scheduled call.

4. signature = ...

We also need to tell the Alarm service the 4 byte function signature it should use
for the scheduled call. Assuming our wallet’s transfer function had a call signature of
transferFunds(address to, uint value) then this value would be the result of
bytes4(sha3(transferFunds(address,uint256)).

5. targetBlock = eth.getBlock(’latest’) + 100

Schedule the call for 100 blocks in the future.

6. alarm.scheduleCall.sendTransaction(walletAddress, signature, dataHash,
targetBlock, 255, 0, {from: eth.coinbase})

This is the actual line that schedules the function call. We send a transaction using the
scheduleCall function on the Alarm contract telling the Alarm service to schedule the call for
100 blocks in the future with the maximum grace period of 255 blocks, and a nonce of 0.

It should be noted that this example does not take into account any of the authorization issues that would likely need
to be in place such as restricting the tranfer funds function to only accept authorized calls as well as authorizing the
desired addresses to make calls to the wallet address.

4.3 Cancelling a call

A scheduled call can be cancelled by its scheduler up to 4 blocks (2 minutes) before it’s target block. To cancel a
scheduled call use the cancelCall function.

• Solidity Function Signature: cancelCall(bytes32 callKey)

• ABI Signature: 0x60b831e5

4.3. Cancelling a call 13

Ethereum Alarm Clock Documentation, Release 1.0.0

14 Chapter 4. Scheduling

CHAPTER 5

Caller Pool

The Alarm service maintains a pool of bonded callers who are responsible for executing scheduled calls. By joining
the caller pool, an account is committing to executing scheduled calls in a reliable and consistent manner. Any caller
who reliably executes the calls which are allocated to them will make a consistent profit from doing so, while callers
who don’t get removed from the pool and forfeit some or all of their bond.

5.1 Caller Bonding

In order to execute scheduled calls, callers put up a small amount of ether up front. This bond, is held for the duration
that a caller remains in the caller pool.

5.1.1 Minimum Bond

The bond amount is set as the maximum allowed transaction cost for a given block. This value can be retrieved with
the getMinimumBond function.

• Solidity Function Signature: getMinimumBond() returns (uint)

• ABI Signature: 0x23306ed6

This value can change from block to block depending on the gas price and gas limit.

5.1.2 Depositing your bond

Use the depositBond function on the Caller Pool to deposit ether towards your bond.

• Solidity Function Signature: depositBond()

• ABI Signature: 0x741b3c39

5.1.3 Checking bond balance

Use the getBondBalance function to check the bond balance of an account.

• Solidity Function Signature: getBondBalance(address) returns (uint)

• ABI Signature: 0x33613cbe

Or to just check the balance of the sender of the transaction.

• Solidity Function Signature: getBondBalance(address) returns (uint)

15

Ethereum Alarm Clock Documentation, Release 1.0.0

• ABI Signature: 0x3cbfed74

5.1.4 Withdrawing your bond

Use the withdrawBond function on the Caller Pool to withdraw the bond ether.

• Solidity Function Signature: withdrawBond()

• ABI Signature: 0xc3daab96

If you are currently in a call pool, either active or queued, you will not be able to withdraw your account balance below
the minimum bond amount.

5.2 Bond Forfeiture

In the event that a caller fails to execute a scheduled call during their allocated call window, a portion of their bond
is forfeited and they are removed from the caller pool. The amount forfeited is equal to the current minimum bond
amount.

There are no restrictions on re-entering the caller pool as long as a caller is willing to put up a new bond.

5.3 About Pools

The caller pool maintains a lists of caller addresses. Whenever a change is made to the pool, either addition of a new
member or removal of an existing member, a new generation is queued to take place of the current generation.

The new generation will be set to begin 160 blocks in the future. During the first 80 blocks of this window, other
members may leave or join the generation. The new generation will be frozen for the 80 blocks leading up to it’s
starting block. Each new generation overlaps the previous generation by 256 blocks.

For example, if we are currently on block 1000, and a member exits the pool.

• The new generation will become active at block 1160

• The new generation will not allow any membership changes after block 1080

• The current generation will be set to end at block 1416 (1160 + 256)

Each new generation carries over all of the previous members upon creation.

Once the queued generation becomes active, members are once again allowed to enter and exit the pool.

Each time a new generation is created, the ordering of its members is shuffled.

Note: It is worth pointing out that from the block during which you exit the pool, you must still execute the calls that
are allocated to you until the current generation has ended. Failing to do so will cause bond forfeiture.

5.4 Entering the Pool

An address can enter the caller pool if the following conditions are met.

• The caller has deposited the minimum bond amount into their bond account.

• The caller is not already in the active pool, or the next queued pool.

16 Chapter 5. Caller Pool

Ethereum Alarm Clock Documentation, Release 1.0.0

• The next queued pool does not go active within the next 80 blocks.

To enter the pool, call the enterPool function on the Caller Pool.

• Solidity Function Signature: enterPool()

• ABI Signature: 0x50a3bd39

If the appropriate conditions are met, you will be added to the next caller pool. This will create a new generation if
one has not already been created. Otherwise you will be added to the next queued generation.

You can use the canEnterPool function to check whether a given address is currently allowed to enter the pool.

• Solidity Function Signature: canEnterPool(address callerAddress) returns (bool)

• ABI Signature: 0x8dd5e298

Or to to check for the address sending the transaction.

• Solidity Function Signature: canEnterPool() returns (bool)

• ABI Signature: 0xc630f92b

5.5 Exiting the Pool

An address can exit the caller pool if the following conditions are met.

• The caller is in the current active generation.

• The caller has not already exited or been removed from the queued pool (if it exists)

• The next queued pool does not go active within the next 80 blocks.

To exit the pool, use the exitPool function on the Caller Pool.

• Solidity Function Signature: exitPool()

• ABI Signature: 0x50a3bd39

If all conditions are met, a new caller pool will be queued if one has not already been created and your address will be
removed from it.

You can use the canExitPool function to check whether a given address is currently allowed to exit the pool.

• Solidity Function Signature: canExitPool(address callerAddress) returns (bool)

• ABI Signature: 0xb010d94a

Alernatively, you can check for the address sending the transaction.

• Solidity Function Signature: canExitPool(address callerAddress) returns (bool)

• ABI Signature: 0x5a5383ac

5.5. Exiting the Pool 17

Ethereum Alarm Clock Documentation, Release 1.0.0

18 Chapter 5. Caller Pool

CHAPTER 6

Call Execution

Call execution is the process through which scheduled calls are executed at their desired block number. After a call
has been scheduled, it can be executed by account which chooses to initiate the transaction. In exchange for executing
the scheduled call, they are paid a small fee of approximately 1% of the gas cost used for executing the transaction.

6.1 Executing a call

Use the doCall function to execute a scheduled call.

• Solidity Function Signature: doCall(bytes32 callKey)

• ABI Signature: 0xfcf36918

When this function is called, the following things happen.

1. A few are done to be sure that all of the necessary pre-conditions pass. If any fail, the function exits early
without executing the scheduled call:

• the scheduler has enough funds to pay for the execution.

• the call has not already been executed.

• the call has not been cancelled.

• the current block number is within the range this call is allowed to be executed.

2. The necessary funds to pay for the call are put on hold.

3. The call is executed via either the authorizedAddress or unauthorizedAddress depending on whether the
scheduler is an authorized caller.

4. The gas cost and fees are computed, deducted from the scheduler’s account, and deposited in the caller’s account.

6.1.1 Setting transaction gas and gas price

It is best to supply the maximum allowed gas when executing a scheduled call as the payment amount for executing
the call is porportional to the amount of gas used. If the transaction runs out of gas, no payment is issued.

The payment is also dependent on the gas price for the executing transaction. The lower the gas price supplied, the
higher the payment will be. (though you should make sure that the gas price is high enough that the transaction will
get picked up by miners).

19

Ethereum Alarm Clock Documentation, Release 1.0.0

6.1.2 Getting your payment

Payment for executing a call is deposited in your Alarm service account and can be withdrawn using the account
management api.

6.2 Determining what scheduled calls are next

You can query the Alarm service for the call key of the next scheduled call on or after a specified block number using
the getNextCall function

• Solidity Function Signature: getNextCall(uint blockNumber)

• ABI Signature: 0x9f927be7

Since there may be multiple calls on the same block, it is best to also check if the call has any siblings using the
getNextCallSibling function. This function takes a call key and returns the call key that is scheduled to come
next.

• Solidity Function Signature: getNextCallSibling(bytes32 callKey)

• ABI Signature: 0x22bc71f

Note: 40 blocks into the future is a good range to monitor since new calls must always be scheduled at least 40 blocks
in the future.

6.3 Designated Callers

If the Caller Pool has any bonded callers in the current active pool, then only designated callers will be allowed to
execute a scheduled call. The exception to this restriction is the last few blocks within the call’s grace period which
the call enters free-for-all mode during which anyone may execute it.

If there are no bonded callers in the Caller Pool then the Alarm service will operate in free-for-all mode for all calls
meaning anyone may execute any call at any block during the call window.

6.3.1 How callers designated

Each call has a window during which it is allowed to be executed. This window begins at the specified targetBlock
and extends through targetBlock + gracePeriod. This window is inclusive of it’s bounding blocks.

For each 16 block section of the call window, the caller pool associated with the targetBlock is selected. The
members of the pool can be though of as a circular queue, meaning that when you iterate through them, when you
reach the last member, you start back over at the first member. For each call, a random starting position is selected in
the member queue and the 16 block sections of the call window are assigned in order to the membes of the call pool
beginning at this randomly chosen index..

The last two 16 block sections (17-32 blocks depending on the gracePeriod) are not allocated, but are considered
free-for-all allowing anyone to call.

Use the getDesignatedCaller function to determine which caller from the caller pool has been designated for
the block.

• Solidity Function Signature: getDesignatedCaller(bytes32 callKey, uint256
blockNumber)

• ABI Signature: 0x3c941423

20 Chapter 6. Call Execution

Ethereum Alarm Clock Documentation, Release 1.0.0

• callKey: specifies the scheduled call.

• blockNumber: the block number (during the call window) in question.

This returns the address of the caller who is designated for this block, or 0x0 if this call can be executed by anyone
on the specified block.

6.3.2 Missing the call window

Anytime a caller fails to execute a scheduled call during the 4 block window reserved for them, the next caller has the
opportunity to claim a portion of their bond merely by executing the call during their window. When this happens, the
previous caller who missed their call window has the current minimum bond amount deducted from their bond balance
and transferred to the caller who executed the call. The caller who missed their call is also removed from the pool.
This removal takes 416 blocks to take place as it occurs within the same mechanism as if they removed themselves
from the pool.

6.3.3 Free For All

When a call enters the last two 16-block chunks of its call window it enters free-for-all mode. During these blocks
anyone, even unbonded callers, can execute the call. The sender of the executing transaction will be rewarded the bond
bonus from all callers who missed their call window.

6.4 Safeguards

There are a limited set of safeguards that Alarm protects those executing calls from.

• Enforces the ability to pay for the maximum possible transaction cost up front.

• Ensures that the call cannot cause the executing transaction to fail due to running out of gas (like an infinite
loop).

• Ensures that the funds to be used for payment are locked during the call execution.

6.5 Tips for executing scheduled calls

The following tips may be useful if you wish to execute calls.

6.5.1 Only look in the next 40 blocks

Since calls cannot be scheduled less than 40 blocks in the future, you can count on the call ordering remaining static
for the next 40 blocks.

6.5.2 No cancellation in next 8 blocks

Since calls cannot be cancelled less than 8 blocks in the future, you don’t need to check cancellation status during the
8 blocks prior to its target block.

6.4. Safeguards 21

Ethereum Alarm Clock Documentation, Release 1.0.0

6.5.3 Check that it was not already called

If you are executing a call after the target block but before the grace period has run out, it is good to check that it has
not already been called.

6.5.4 Check that the scheduler can pay

It is good to check that the scheduler has sufficient funds to pay for the call’s potential gas cost plus fees.

22 Chapter 6. Call Execution

CHAPTER 7

Call pricing and fees

The Alarm service operates under a scheduler pays model, which means that the scheduler of a call is responsible for
paying for the full gas cost and fees associated with executing the call.

This payment is automatic and happens during the course of the execution of the scheduled call.

7.1 Minimum Balance

In order to guarantee reimbursment of gas costs and payment to the account which executes the scheduled call, the
scheduler of the call must have an account balance sufficient to pay for the call at the time of execution. Since, it is
unknown how much gas the call will consume the Alarm service requires a minimum balance equal to the maximum
possible transaction cost plus fees.

7.2 Call Fees and Caller Payment

The account which executes the scheduled call is reimbursed 100% of the gas cost + payment for their service. The
creator of the Alarm service is also paid the same payment.

The payment value is computed with the formula 1% of GasUsed * BaseGasPrice * GasPriceScalar
where:

• GasUsed: is the total gas consumption for the call execution. This includes all of the gas used by the Alarm
service to do things like looking up call data, checking for sufficient account balance to pay for the call, paying
the caller, etc.

• BaseGasPrice is the gas price that was used by the scheduler when they scheduled the function call.

• GasPriceScalar is a multiplier that ranges from 0 - 2 which is based on the difference between the gas priced
used for call execution and the gas price used during call scheduling. This number incentivises the call executor
to use as low a gas price as possible.

7.2.1 The GasPriceScalar multiplier

This multiplier is computed with the following formula.

• IF gasPrice > baseGasPrice

baseGasPrice / gasPrice

• IF gasPrice <= baseGasPrice

23

Ethereum Alarm Clock Documentation, Release 1.0.0

baseGasPrice / (2 * baseGasPrice - gasPrice)

Where:

• baseGasPrice is the tx.gasprice used when the call was scheduled.

• gasPrice is the tx.gasprice used to execute the call.

At the time of call execution, the baseGasPrice has already been set, so the only value that is variable is the
gasPrice which is set by the account executing the transaction. Since the scheduler is the one who ends up paying
for the actual gas cost, this multiplier is designed to incentivize the caller using the lowest gas price that can be expected
to be reliably picked up and promptly executed by miners.

Here are the values this formula produces for a baseGasPrice of 20 and a gasPrice ranging from 10 - 40 which
uses 5000 gas;

gasPrice multiplier payout
15 1.20 120
16 1.17 117
17 1.13 113
18 1.09 109
19 1.05 105
20 1.00 100
21 0.95 95
22 0.91 91
23 0.87 87
24 0.83 83
25 0.80 80
26 0.77 77
27 0.74 74
28 0.71 71
29 0.69 69
30 0.67 67
31 0.65 65
32 0.63 63
33 0.61 61
34 0.59 59
35 0.57 57
36 0.56 56
37 0.54 54
38 0.53 53
39 0.51 51
40 0.50 50

You can see from this table that as the gasPrice for the executing transaction increases, the total payout for executing
the call decreases. This provides a strong incentive for the entity executing the transaction to use a reasonably low
value.

Alternatively, if the gasPrice is set too low (potentially attempting to maximize payout) and the call is not picked
up by miners in a reasonable amount of time, then the entity executing the call will not get paid at all. This provides a
strong incentive to provide a value high enough to ensure the transaction will be executed.

7.3 Overhead

The gas overhead that you can expect to pay for your function call is approximately 150,000 gas.

24 Chapter 7. Call pricing and fees

CHAPTER 8

Contract ABI

Beyond the simplest use cases, the use of address.call to interact with the Alarm service is limiting. Beyond the
readability issues, it is not possible to get the return values from function calls when using call().

By using an abstract solidity contract which defines all of the function signatures, you can easily call any of the Alarm
service’s functions, letting the compiler handle computation of the function ABI signatures.

8.1 Abstract Solidity Contracts

The following abstract contracts can be used alongside your contract code to interact with the Alarm service.

8.1.1 Abstract Alarm Contract Source Code

8.1.2 Register Data is special

You may notice that the contract above is missing the registerData function. This is because it is allowed to be
called with any call signature and solidity has no way of defining such a function.

Registering your data requires use of the address.call() api.

8.1.3 Only use what you need

The contracts above have stub functions for every API exposed by Alarm and CallerPool. It is safe to remove any
functions or events from the abstract contracts that you do not intend to use.

25

Ethereum Alarm Clock Documentation, Release 1.0.0

26 Chapter 8. Contract ABI

CHAPTER 9

Caller Pool API

The Caller Pool contract exposes the following api functions.

9.1 Bond Management

The following functions are available for managing the ether deposited as a bond with the Caller Pool.

9.1.1 Get Minimum Bond

Use the getMinimumBond function to retrieve the current minimum bond value required to be able to enter the
caller pool.

• Solidity Function Signature: getMinimumBond() returns (uint)

• ABI Signature: 0x23306ed6

9.1.2 Check Bond Balance

Use the getBondBalance function to check the bond balance for the provided address.

• Solidity Function Signature: getBondBalance(address callerAddress) returns (uint)

• ABI Signature: 0x33613cbe

Or to check the balance of the sender of the transaction.

• Solidity Function Signature: getBondBalance() returns (uint)

• ABI Signature: 0x3cbfed74

9.1.3 Deposit Bond

Use the depositBond function to deposit you bond with the caller pool.

• Solidity Function Signature: depositBond()

• ABI Signature: 0x741b3c39

27

Ethereum Alarm Clock Documentation, Release 1.0.0

9.1.4 Withdraw Bond

Use the withdrawBond function to withdraw funds from your bond.

• Solidity Function Signature: withdrawBond()

• ABI Signature: 0xc3daab96

When in either an active or queued caller pool, you cannot withdraw your account below the minimum bond value.

9.2 Call Scheduling and Execution

The following function is available for callers.

9.2.1 Get Designated Caller

Use the getDesignatedCaller function to retrieve which caller address, if any, is designated as the caller for a
given block and scheduled call.

• Solidity Function Signature: getDesignatedCaller(bytes32 callKey, uint256
blockNumber)

• ABI Signature: 0x3c941423

• callKey: specifies the scheduled call.

• blockNumber: the block number (during the call window) in question.

This returns the address of the caller who is designated for this block, or 0x0 if this call can be executed by anyone
on the specified block.

9.3 Pool Information

The following functions are available to query information about call pools.

9.3.1 Pool Generations

Use the getCurrentGenerationId function to lookup the id of the pool generation that is currently active.
(returns 0 if no generations exist)

• Solidity Function Signature: getCurrentGenerationId() returns (uint)

• ABI Signature: 0xb0171fa4

Use the getNextGenerationId function to lookup the generation that is queued to become active. Returns 0x0
if there is no next generation queued.

• Solidity Function Signature: getNextGenerationId() returns (uint)

• ABI Signature: 0xa502aae8

Use the getGenerationStartAt function to lookup the block on which a given generation will become active.

• Solidity Function Signature: getGenerationStartAt(uint generationId) returns
(uint)

• ABI Signature: 0xf8b11853

28 Chapter 9. Caller Pool API

Ethereum Alarm Clock Documentation, Release 1.0.0

Use the getGenerationEndAt function to lookup the block on which a given generation will end and become
inactive. Returns 0 if the generation is still open ended.

• Solidity Function Signature: getGenerationEndAt(uint generationId) returns (uint)

• ABI Signature: 0x306b031d

Use the getGenerationSize function to query the number of members in a given generation.

• Solidity Function Signature: getGenerationSize(uint generationId) returns (uint)

• ABI Signature: 0xb3559460

9.3.2 Get Pool Key for Block

Use the getGenerationIdForCall function to return the generationId that should be used for the given
call key. This can be helpful to determine whether your call execution script should pay attention to specific calls if
you are in the process of entering or exiting the pool.

• Solidity Function Signature: getGenerationIdForCall(bytes32 callKey) returns
(uint)

• ABI Signature: 0xdb681e54

9.4 Pool Membership

The following functions can be used to query about an address’s pool membership.

9.4.1 Is In Pool

Use the isInPool function to query whether an address is in either the currently active generation or the queued
generation.

• Solidity Function Signature: isInPool(address callerAddress) returns (bool)

• ABI Signature: 0x8baced64

Or to check whether the current calling address is in the pool.

• Solidity Function Signature: isInPool() returns (bool)

• ABI Signature: 0x1ae460e5

9.4.2 Is In Generation

Use the isInGeneration function to query whether an address is in a specific generation.

• Solidity Function Signature: isInGeneration(address callerAddress, uint256
generationId) returns (bool)

• ABI Signature: 0x7772a380

Or to query whether the current calling address is in the pool.

• Solidity Function Signature: isInGeneration(uint256 generationId) returns (bool)

• ABI Signature: 0xa6c01cfd

9.4. Pool Membership 29

Ethereum Alarm Clock Documentation, Release 1.0.0

9.5 Entering and Exiting Pools

The following functions can be used for actions related to entering and exiting the call pool.

9.5.1 Can Enter Pool

Use the canEnterPool function to query whether a given address is allowed to enter the caller pool.

• Solidity Function Signature: canEnterPool(address callerAddress) returns (bool)

• ABI Signature: 0x8dd5e298

Or to query whether the current calling address is allowed.

• Solidity Function Signature: canEnterPool() returns (bool)

• ABI Signature: 0xc630f92b

9.5.2 Can Exit Pool

Use the canExitPool function to query whether or not you are allowed to exit the caller pool.

• Solidity Function Signature: canExitPool(address callerAddress) returns (bool)

• ABI Signature: 0xb010d94a

Or to query whether the current calling address is allowed.

• Solidity Function Signature: canExitPool(address callerAddress) returns (bool)

• ABI Signature: 0x5a5383ac

9.5.3 Enter Pool

Use the enterPool function to enter the caller pool.

• Solidity Function Signature: enterPool() returns (bool)

• ABI Signature: 0x50a3bd39

9.5.4 Exit Pool

Use the exitPool function to exit the caller pool.

• Solidity Function Signature: exitPool() returns (bool)

• ABI Signature: 0x29917954

30 Chapter 9. Caller Pool API

CHAPTER 10

Scheduled Call API

The Alarm service exposes getter functions for all call information that may be important to those scheduling or
executing calls.

10.1 Properties of a Scheduled Call

• bytes32 callKey: the unique identifier for this function call.

• address contractAddress: the address of the contract the function should be called on.

• address scheduledBy: the address who scheduled the call.

• uint calledAtBlock: the block number on which the function was called. (0 if the call has not yet been exe-
cuted.)

• uint targetBlock: the block that the function should be called on.

• uint8 gracePeriod: the number of blocks after the targetBlock during which it is stll ok to execute the call.

• uint nonce: value to differentiate multiple identical calls that should happen simultaneously.

• uint baseGasPrice: the gas price that was used when the call was scheduled.

• uint gasPrice: the gas price that was used when the call was executed. (0 if the call has not yet been executed.)

• uint gasUsed: the amount of gas that was used to execute the function call (0 if the call has not yet been
executed.)

• uint payout: the amount in wei that was paid to the address that executed the function call. (0 if the call has
not yet been executed.)

• uint fee: the amount in wei that was kept to pay the creator of the Alarm service. (0 if the call has not yet been
executed.)

• bytes4 sig: the 4 byte ABI function signature of the function on the contractAddress for this call.

• bool isCancelled: whether the call was cancelled.

• bool wasCalled: whether the call was called.

• bool wasSuccessful: whether the call was successful.

• bytes32 dataHash: the sha3 hash of the data that should be used for this call.

31

Ethereum Alarm Clock Documentation, Release 1.0.0

10.1.1 Call Key

bytes32 callKey

The following functions are available on the Alarm service. The vast majority of them take the callKey which is an
identifier used to reference a scheduled call.

The callKey is computed as sha3(scheduledBy, contractAddress, signature, dataHash,
targetBlock, gracePeriod, nonce) where:

• scheduledBy: the address that scheduled the call.

• contractAddress: the address of the contract that the function should be called on when this call is executed.

• signature: the byte4 ABI function signature of the function that should be called.

• dataHash: the bytes32 sha3 hash of the call data that should be used for this scheduled call.

• targetBlock: the uint256 block number that this call should be executed on.

• gracePeriod: the uint8 number of blocks after targetBlock during which it is still ok to execute this
scheduled call.

• nonce: the uint256 value that can be used to distinguish between multiple calls with identical data that should
occur during the same time. This value only matters if you are registering multiple calls for which all of the
other fields are the same.

10.1.2 Contract Address

address contractAddress

The address of the contract that the scheduled function call should be executed on. Retrieved with the
getCallContractAddress function.

• Solidity Function Signature: getCallContractAddress(bytes32 callKey) returns
(address)

• ABI Signature: 0x9c975df

10.1.3 Scheduled By

address scheduledBy

The address of the contract that the scheduled function call should be executed on. Retrieved with the
getCallScheduledBy function.

• Solidity Function Signature: getCallScheduledBy(bytes32 callKey) returns (address)

• ABI Signature: 0x8b37e656

10.1.4 Called at Block

uint calledAtBlock

The block number that this call was executed. Retrieved with the getCallCalledAtBlock function. Returns 0 if
the call has not been executed yet.

• Solidity Function Signature: getCallCalledAtBlock(bytes32 callKey) returns (uint)

• ABI Signature: 0xe4098655

32 Chapter 10. Scheduled Call API

Ethereum Alarm Clock Documentation, Release 1.0.0

10.1.5 Grace Period

uint8 gracePeriod

The number of blocks after the targetBlock that it is still ok to execute this call. Retrieved with the
getCallGracePeriod function.

• Solidity Function Signature: getCallGracePeriod(bytes32 callKey) returns (uint8)

• ABI Signature: 0x34c19b93

10.1.6 Target Block

uint targetBlock

The block number that this call should be executed on. Retrieved with the getCallTargetBlock function.

• Solidity Function Signature: getCallTargetBlock(bytes32 callKey) returns (uint)

• ABI Signature: 0x234917d4

10.1.7 Base Gas Price

uint baseGasPrice

The value of tx.gasprice that was used to schedule this function call. Retrieved with the
getCallBaseGasPrice function. Returns 0 if the call has not been executed yet.

• Solidity Function Signature: getCallBaseGasPrice(bytes32 callKey) returns (uint)

• ABI Signature: 0x77b19cd5

10.1.8 Gas Price

uint gasPrice

The value of tx.gasprice that was used to execute this function call. Retrieved with the getCallGasPrice
function. Returns 0 if the call has not been executed yet.

• Solidity Function Signature: getCallGasPrice(bytes32 callKey) returns (uint)

• ABI Signature: 0x78bc6460

10.1.9 Gas Used

uint gasUsed

The amount of gas that was used during execution of this function call. Retrieved with the getCallGasUsed
function. Returns 0 if the call has not been executed yet.

• Solidity Function Signature: getCallGasUsed(bytes32 callKey) returns (uint)

• ABI Signature: 0x86ae9e4

10.1. Properties of a Scheduled Call 33

Ethereum Alarm Clock Documentation, Release 1.0.0

10.1.10 Signature

bytes4 signature

The ABI function signature that should be used to execute this function call. Retrieved with the
getCallSignature function.

• Solidity Function Signature: getCallSignature(bytes32 callKey) returns (uint)

• ABI Signature: 0xc88edaed

10.1.11 Was Called

bool wasCalled

Boolean flag for whether or not this function has been called yet. Retrieved with the checkIfCalled function.

• Solidity Function Signature: checkIfCalled(bytes32 callKey) returns (bool)

• ABI Signature: 0x2a472ae8

10.1.12 Was Successful

bool wasSuccessful

Boolean flag for whether or not this function call was successful when executed. Retrieved with the
checkIfSuccess function.

• Solidity Function Signature: checkIfSuccess(bytes32 callKey) returns (bool)

• ABI Signature: 0x6ffc0896

10.1.13 Is Cancelled

bool isCancelled

Boolean flag for whether or not this function call was cancelled. Retrieved with the checkIfCancelled function.

• Solidity Function Signature: checkIfCancelled(bytes32 callKey) returns (bool)

• ABI Signature: 0xaa4cc01f

10.1.14 Call Data Hash

bytes32 dataHash

The sha3 hash of the call data that will be used for this function call. Retrieved with the getCallDataHash
function.

• Solidity Function Signature: getCallDataHash(bytes32 callKey) returns (bytes32)

• ABI Signature: 0xf9f447eb

34 Chapter 10. Scheduled Call API

Ethereum Alarm Clock Documentation, Release 1.0.0

10.1.15 Call Data

bytes data

The full call data that will be used for this function call. Retrieved with the getCallData function.

• Solidity Function Signature: getCallData(bytes32 callKey) returns (bytes)

• ABI Signature: 0x75428615

10.1.16 Payout

uint payout

The amount in wei that was paid to the account that executed this function call. Retrieved with the getCallPayout
function. If the function has not been executed this will return 0.

• Solidity Function Signature: getCallPayout(bytes32 callKey) returns (uint)

• ABI Signature: 0xa9743c68

10.1.17 Fee

uint fee

The amount in wei that was paid to the creator of the Alarm service. Retrieved with the getCallFee function. If
the function has not been executed this will return 0.

• Solidity Function Signature: getCallFee(bytes32 callKey) returns (uint)

• ABI Signature: 0xfc300522

10.1. Properties of a Scheduled Call 35

Ethereum Alarm Clock Documentation, Release 1.0.0

36 Chapter 10. Scheduled Call API

CHAPTER 11

Events

The following events are used to log notable events within the Alarm service.

11.1 Alarm Events

The primary Alarm service contract logs the following events. Please not that all of the event names begin with an
underscore.

11.1.1 Deposit

• Solidity Event Signature: _Deposit(address indexed _from, address indexed
accountAddress, uint value)

• ABI Signature: 0x47a08955

Executed anytime a deposit is made into an address’s Alarm account.

11.1.2 Withdraw

• Solidity Event Signature: _Withdraw(address indexed accountAddress, uint value)

• ABI Signature: 0xd0c5cf41

Executed anytime a withdrawl is made from an address’s Alarm account.

11.1.3 Call Scheduled

• Solidity Event Signature: CallScheduled(bytes32 indexed callKey)

• ABI Signature: 0xa951c534

Executed when a new scheduled call is created.

11.1.4 Call Executed

• Solidity Event Signature: CallExecuted(address indexed executedBy, bytes32
indexed callKey)

• ABI Signature: 0x8f4d8723

37

Ethereum Alarm Clock Documentation, Release 1.0.0

Executed when a scheduled call is executed.

11.1.5 Call Aborted

• Solidity Event Signature: CallAborted(address indexed executedBy, bytes32 indexed
callKey, bytes18 reason)

• ABI Signature: 0xe92bb686

Executed when an attempt is made to execute a scheduled call is rejected. The reason value in this log entry contains
a short string representation of why the call was rejected.

11.1.6 Added To Generation

• Solidity Event Signature: _AddedToGeneration(address indexed callerAddress, uint
indexed pool)

• ABI Signature: 0x4327115b

Executed anytime a new address is added to the caller pool.

11.1.7 Removed From Generation

• Solidity Event Signature: _RemovedFromGeneration(address indexed callerAddress,
uint indexed pool)

• ABI Signature: 0xd6940c8c

Executed anytime an address is removed from the caller pool.

11.1.8 Awarded Missed Block Bonus

• Solidity Event Signature: _AwardedMissedBlockBonus(address indexed fromCaller,
address indexed toCaller, uint indexed poolNumber, bytes32 callKey, uint
blockNumber, uint bonusAmount)

• ABI Signature: 0x7c41de34

Executed anytime a pool member’s bond is awarded to another address due to them missing a scheduled call that was
designated as theirs to execute.

38 Chapter 11. Events

CHAPTER 12

Changelog

12.1 0.4.0

• Convert Alarm service to use library contracts for all functionality.

• CallerPool contract API is now integrated into the Alarm API

12.2 0.3.0

• Convert Alarm service to use Grove for tracking scheduled call ordering.

• Enable logging most notable Alarm service events.

• Two additional convenience functions for invoking scheduleCall with gracePeriod and nonce as optional
parameters.

12.3 0.2.0

• Fix for Issue 42. Make the free-for-all bond bonus restrict itself to the correct set of callers.

• Re-enable the right tree rotation in favor of removing three getLastX function. This is related to the pi-million
gas limit which is restricting the code size of the contract.

12.4 0.1.0

• Initial release.

39

https://github.com/pipermerriam/ethereum-grove
https://github.com/pipermerriam/ethereum-alarm-clock/issues/42

	Overview
	Scheduling Function Calls
	Execution of scheduled calls
	Guarantees

	Account Managment
	Checking account balance
	Depositing funds
	Withdrawing funds

	Authorization
	Differentiating calls
	Checking authorization status
	Managing Authorization

	Scheduling
	Registering Call Data
	Scheduling the Call
	Cancelling a call

	Caller Pool
	Caller Bonding
	Bond Forfeiture
	About Pools
	Entering the Pool
	Exiting the Pool

	Call Execution
	Executing a call
	Determining what scheduled calls are next
	Designated Callers
	Safeguards
	Tips for executing scheduled calls

	Call pricing and fees
	Minimum Balance
	Call Fees and Caller Payment
	Overhead

	Contract ABI
	Abstract Solidity Contracts

	Caller Pool API
	Bond Management
	Call Scheduling and Execution
	Pool Information
	Pool Membership
	Entering and Exiting Pools

	Scheduled Call API
	Properties of a Scheduled Call

	Events
	Alarm Events

	Changelog
	0.4.0
	0.3.0
	0.2.0
	0.1.0

