

 Navigation

 	
 index

 	
 next |

 	Ethereum Alarm Clock 1.0.0 documentation

Welcome to Ethereum Alarm Clock’s documentation!

The Ethereum Alarm Clock is a service that allows scheduling of contract
function calls at a specified block number in the future. These scheduled
calls are then executed by other nodes on the ethereum network who are
reimbursed for their gas costs plus a small payment for the transaction.

Contents:

	Overview
	Scheduling Function Calls

	Execution of scheduled calls

	Guarantees

	Account Managment
	Checking account balance

	Depositing funds

	Withdrawing funds

	Authorization
	Differentiating calls

	Checking authorization status

	Managing Authorization

	Scheduling
	Registering Call Data

	Scheduling the Call

	Cancelling a call

	Caller Pool
	Caller Bonding

	Bond Forfeiture

	About Pools

	Entering the Pool

	Exiting the Pool

	Call Execution
	Executing a call

	Determining what scheduled calls are next

	Designated Callers

	Safeguards

	Tips for executing scheduled calls

	Call pricing and fees
	Minimum Balance

	Call Fees and Caller Payment

	Overhead

	Contract ABI
	Abstract Solidity Contracts

	Caller Pool API
	Bond Management

	Call Scheduling and Execution

	Pool Information

	Pool Membership

	Entering and Exiting Pools

	Scheduled Call API
	Properties of a Scheduled Call

	Events
	Alarm Events

	Caller Pool Events

	Changelog
	0.3.0

	0.2.0

	0.1.0

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Overview

The Ethereum Alarm service is a contract on the ethereum network that
facilitates scheduling of function calls for a specified block in the future.
It is designed to require little or no trust between any of the users of the
service, as well as providing no special access to the creator of the
contract.

Scheduling Function Calls

When a contract, or individual wants to schedule a function call with the Alarm
service it will perform the following steps.

	Ensure that the account that is scheduling the call has a sufficient balance
to pay for the scheduled call.

	Register any call data that will be required to make the function call.

	Schedule the function call with the service.

Account Balance

The Alarm service operates under a scheduler pays model meaning that the
address which schedules the function call is required to pay for it. When a
call is executed, the initial gas cost is paid for by the ethereum address that
sends the executing transaction. This address needs to be reimbursed this gas
cost plus a small fee. The Alarm service requires this payment up front in the
form of an account balance.

The Alarm service maintains accounts for each address on the network. These
accounts can have ether deposited and withdrawn at any time. However, at the
time the call is executed, if the scheduler’s account does not have enough
funds to pay for the execution of the scheduled call, it will be skipped.

Registering Call Data

The Alarm service is not aware of the function ABI for the calls it executes.
Instead, it uses the function ABI signature and raw call data to execute the
function call.

To do this, any data that needs to be used in the call must be registered prior
to scheduling the call. Call data only needs to be registered once, and can be
re-used for subsequent function calls.

Call Scheduling

Function calls can be scheduled for any block at least 40 blocks (~10 minutes)
in the future. Scheduling is done by providing the Alarm service with the
following information:

	Contract address the call should be executed on.

	ABI signature of the function that should be called.

	SHA3 hash of the call data that should be included in the function call.

	Target block number that the call should be executed on.

	Number of blocks after the target block during which it still ok to execute
the call.

	A nonce to allow differentiation between identical calls that are scheduled
for the same block.

Once scheduled, the call waits to be picked up and executed at the desired block.

Execution of scheduled calls

Scheduled function calls can ultimately be executed by anyone who wishes to
initiate the transaction. This will likely be an automated process that
monitors for upcoming scheduled calls and executes them at the appropriate
block.

Usage Fees

A scheduled function call costs approximately 102% of the total gas expenditure
for the transaction in which it was executed.

The additional 2% is split evenly between paying the account which executed the
function call and the creator of the Alarm service for the many many hours
spent creating it.

Guarantees

Will the call happen?

There are no guarantees that your function will be called. The design of this
service is meant to provide the proper motivation for calls to be executed, but
it is entirely possible that certain calls will be missed due to unforseen
circumstances.

Will I get paid for executing a call?

If you are diligent about how you go about executing scheduled calls, there
should be a near 0% chance that you will not be reimbursed for your gas costs.
See the section on executing calls for more information on how to protect
yourself.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Account Managment

The scheduler pays system requires that payment for scheduled calls be
provided prior to the execution of the call, so that the sender of the
executing transaction can immediately be reimbursed for the gas costs.

The account and associated funds are used to pay for any calls scheduled by
that address. Inturn, each ethereum address may withdraw or deposit funds in
its account at any time with no restrictions.

It is also possible to deposit funds in the account of another address. You
cannot however withdraw funds from any address other than your own.

Checking account balance

Your account balance can be checked by accessing the public mapping of accounts
to balances.

	Solidity Function Signature: accountBalances(address accountAddress) returns (uint)

	ABI Signature: 0x6ff96d17

Calling this function will return the balance in wei for the provided address.

Depositing funds

Depositing funds can be done one of a few ways.

By sending ether

The simplest way to add funds to your account is to just send the ether to the
address of the alarm service. Any funds sent to the alarm service are added to
the account balance of the sender.

Warning

Contracts cannot add funds to their accounts this way using the send
function on addresses. This is due to solidity’s protection against
unbounded gas use in contract fallback functions. See below for how
contracts can add their own funds.

Here is how you would do this from the geth javascript console.

The above would deposit 100 wei in the account of whatever address you used for
the from value in the transaction.

By using the deposit function

Funds can also be deposited in a specific account by calling the deposit
function and sending the desired deposit value with the transaction.

	Solidity Function Signature: deposit(address accountAddress)

	ABI Signature: 0xf340fa01

Sending from a contract

Contracts can deposit funds through these mechanisms as well.

Or, if you would like your contract to deposit funds in the account of another
address.

Note

It should be pointed out that you cannot deposit funds by calling
alarmAddress.send(value). By default in solidity, this transaction is sent
with only enough gas to execute the funds transfer, and the fallback function
on the Alarm service requires a bit more gas so that it can record the increase
in account balance.

Withdrawing funds

Withdrawing funds is restricted to the address they are associated with. This
is done by calling the withdraw function on the Alarm service.

	Solidity Function Signature: withdraw(uint value)

	ABI Signature: 2e1a7d4d

If the account has a balance sufficient to fulfill the request, the amount specified
specified in wei will be transferred to msg.sender.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Authorization

Scheduled calls can be considered either authorized or unauthorized.

An authorized call is one for which either scheduledBy == targetAddress
or for which the scheduledBy address has been granted explicit
authorization by targetAddress to schedule calls.

An unauthorized call is one for which scheduledBy != targetAddress and
the scheduledBy address has not been granted authorization to schedule
calls.

Note

Any address can still schedule calls towards any other address. The
authorization status only effects which address the calls originate from,
not whether they will be executed.

Differentiating calls

When the Alarm service executes calls, they will come from one of two addresses
depending on whether the call is considered authorized or unauthorized.
These addresses will sometimes be referred to as relays, as they relay the
actually function call for the Alarm service, allowing the callee to
differentiate between authorized and unauthorized calls.

Note

A call’s authorization state is determined at the time of execution.

authorized calls will orignate from the address returned by
the authorizedAddress function.

	Solidity Function Signature: authorizedAddress() returns (address)

	ABI Signature: 0x5539d400

unauthorized calls will orignate from the address returned by
the unauthorizedAddress function.

	Solidity Function Signature: unauthorizedAddress() returns (address)

	ABI Signature: 0x94d2b21b

Checking authorization status

When a function is called on a contract, it can check whether or not it is
authorized by checking which of the two relay addresses matches msg.sender.

To do this, our contract needs to be at least partially aware of the Alarm ABI function signatures which can be done easily with an abstract contract.

Consider the idea of a contract which holds onto funds until a specified future
block at which point it suicides sending all of the funds to the trustee.

contract AlarmAPI {
 function authorizedAddress() returns (address);
 function unauthorizedAddress() returns (address);
}

contract TrustFund {
 address trustee = 0x...;
 address _alarm = 0x...;

 function releaseFunds() public {
 AlarmAPI alarm = AlarmAPI(_alarm);
 if (msg.sender == alarm.authorizedAddress()) {
 suicide(trustee);
 }
 }
}

In the above example, the TrustFund.releaseFunds function checks whether
the incoming call is from the authorized alarm address before suiciding and
releasing the funds.

Note

It should be noted that the above example would require authorization to
have been setup by the TrustFund contract via some mechanism like a
contract constructor.

Managing Authorization

It is the sole responsibility of the contract to manage address authorizations,
as the functions surrounding authorization use msg.sender as the
contractAddress value.

Granting Authorization

Authorization is granted with the addAuthorization function.

	Solidity Function Signature: addAuthorization(address schedulerAddress)

	ABI Signature: 0x35b28153

This function adds the schedulerAddress address to the authorized addresses
for msg.sender.

Here is how a solidity contract could grant access to it’s creator.

contract Example {
 address alarm = 0x....;

 function Example() {
 alarm.call(bytes4(sha3("addAuthorization(address)")), msg.sender);
 }
}

Upon creation, the Example contract adds it’s creator as an authorized
scheduler with the alarm service.

Checking Access

You can check whether an address has authorization to schedule calls for a
given address with the checkAuthorization function.

	Solidity Function Signature: checkAuthorization(address schedulerAddress, address contractAddress) returns (bool)

	ABI Signature: 0x685c234a

Removing Authorization

A contract can remove authorization from a given address using the
removeAuthorization function.

	Solidity Function Signature: removeAuthorization(address schedulerAddress)

	ABI Signature: 0x94f3f81d

contract MemberRoster {
 address alarm = 0x....;

 mapping (address => bool) members;

 function removeMember(address memberAddress) {
 members[memberAddress] = false;

 alarm.call(bytes4(sha3("removeAuthorization(address)")), memberAddress);
 }
}

In the example above we are looking at part of a contract that manages the
membership for an organization of some sort. Upon removing a member from the
organization, the MemberRoster contract also removes their authorization
status for scheduled calls.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Scheduling

Call scheduling is the core of the Ethereum Alarm Service. Calls can be
scheduled on any block at least 40 blocks (~10 minutes) in the future.

Registering Call Data

If a function call requires arguments, then prior to scheduling the call, the
call data for those arguments must be registered. This is done with the
registerData function.

	Solidity Function Signature: registerData()

	ABI Signature: 0xb0f07e44

It may be confusing at first to see that this function does not take any
arguments, yet it is responsible for recording the call data for a future
function call. Internally, the registerData function pulls the call data
off of msg.data, effectively allowing any number and type of arguments to
be passed to it (like the sha3 function).

In solidity, this would look something like the following.

Upon receiving this call, the Alarm service strips off the first four bytes
from msg.data to remove the ABI function signature and then stores the full
call data.

Call data only ever needs to be registered once after which it can be used
without needing to re-register it.

The registerData function cannot be used via an abstract contract in
solidity, as solidity has not mechanism to allow for variadic arguments in a
function call. You can however, simplify some of your contract code with a
local alias on your contract that handles the call logic for you.

You can implement as many local registerData functions as you need with
each argument pattern that you need to schedule data for, allowing for simple
data registration.

Scheduling the Call

Function calls are scheduled with the scheduleCall function on the Alarm
service.

	Solidity Function Signature: scheduleCall(address contractAddress, bytes4 signature, bytes32 dataHash, uint targetBlock, uint8 gracePeriod, uint nonce);

	ABI Signature: 0x52afbc33

The scheduleCall function takes the following parameters:

	address contractAddress: The contract address that the function should be
called on.

	bytes4 abiSignature: The 4 byte ABI function signature for the call.

	bytes32 dataHash: The sha3 hash of the call data for the call.

	uint targetBlock: The block number the call should be executed on.

	uint8 gracePeriod: The number of blocks after targetBlock that it is
ok to still execute this call.

	uint nonce: Number to allow for differentiating a call from another one
which has the exact same information for all other user specified fields.

Note

Prior to scheduling a function call, any call data necessary for the call must
have already been registered.

The scheduleCall function has two alternate invocation formats that can be
used as well.

	Solidity Function Signature: scheduleCall(address contractAddress, bytes4 abiSignature, bytes32 dataHash, uint targetBlock, uint8 gracePeriod) public

	ABI Signature: 0x1145a20f

When invoked this way, the nonce argument is defaulted to 0.

	Solidity Function Signature: scheduleCall(address contractAddress, bytes4 abiSignature, bytes32 dataHash, uint256 targetBlock) public

	ABI Signature: 0xf828c3fa

When invoked this way, the gracePeriod argument is defaulted to 255 and
then nonce set to 0.

Contract scheduling its own call

Contracts can take care of their own call scheduling.

In this example Lottery contract, every time the beginLottery function
is called, a call to the pickWinner function is scheduled for approximately
24 hours later (5760 blocks).

Scheduling a call for a contract

Alternatively, calls can be scheduled to be executed on other contracts

Note

The Alarm service operates under a scheduler pays model meaning that
payment for all executed calls is taken from the scheduler’s account.

Lets look at an example where we want to schedule a funds transfer for a wallet
contract of some sort.

Note

This example assuming that you have the Alarm contract ABI loaded into a
web3 contract object.

// First register the call data
// 0xb0f07e44 is the ABI signature for the `registerData` function.
> callData = ... // the full ABI encoded call data for the call we want to schedule.
> web3.sendTransaction({to: alarm.address, data: 'b0f07e44' + callData, from: eth.coinbase})
// Now schedule the call
> dataHash = eth.sha3(callData)
> signature = ... // the 4-byte ABI function signature for the wallet function that transfers funds.
> targetBlock = eth.getBlock('latest') + 100 // 100 blocks in the future.
> alarm.scheduleCall.sendTransaction(walletAddress, signature, dataHash, targetBlock, 255, 0, {from: eth.coinbase})

There is a lot going on in this example so lets look at it line by line.

	callData = ...

Our wallet contract will likely take some function arguments when
transferring funds, such as the amount to be transferred. This variable
would need to be populated with the ABI encoded call data for this
function.

	web3.sendTransaction({to: alarm.address, data: 'b0f07e44' + callData, from: eth.coinbase})

Here we are registering the call data with the Alarm service. b0f07e44
is the ABI encoded call signature for the registerData function on the
alarm service.

	dataHash = eth.sha3(callData)

Here we compute the sha3 hash of the call data we will want sent with
the scheduled call.

	signature = ...

We also need to tell the Alarm service the 4 byte function signature it
should use for the scheduled call. Assuming our wallet’s transfer function
had a call signature of transferFunds(address to, uint value) then this
value would be the result of
bytes4(sha3(transferFunds(address,uint256)).

	targetBlock = eth.getBlock('latest') + 100

Schedule the call for 100 blocks in the future.

	alarm.scheduleCall.sendTransaction(walletAddress, signature, dataHash, targetBlock, 255, 0, {from: eth.coinbase})

This is the actual line that schedules the function call. We send a
transaction using the scheduleCall function on the Alarm contract
telling the Alarm service to schedule the call for 100 blocks in the future
with the maximum grace period of 255 blocks, and a nonce of 0.

It should be noted that this example does not take into account any of the
authorization issues that would likely need to be in place such as restricting
the tranfer funds function to only accept authorized calls as well as
authorizing the desired addresses to make calls to the wallet address.

Cancelling a call

A scheduled call can be cancelled by its scheduler up to 4 blocks (2 minutes)
before it’s target block. To cancel a scheduled call use the cancelCall
function.

	Solidity Function Signature: cancelCall(bytes32 callKey)

	ABI Signature: 0x60b831e5

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Caller Pool

The Alarm service maintains a pool of bonded callers who are responsible for
executing scheduled calls. By joining the caller pool, an account is
committing to executing scheduled calls in a reliable and consistent manner.
Any caller who reliably executes the calls which are allocated to them will
make a consistent profit from doing so, while callers who don’t get removed
from the pool and forfeit some or all of their bond.

The Caller Pool is handled by a separate contract. This contract is deployed
by the Alarm service contract during creation. The address of this contract
can be retrieved with the getCallerPoolAddress function on the Alarm
service.

	Solidity Function Signature: getCallerPoolAddress() returns (address)

	ABI Signature: 0x662fc8a0

This returns the appropriate address to use for interacting with the Caller
Pool.

Caller Bonding

In order to execute scheduled calls, callers put up a small amount of ether up
front. This bond, is held for the duration that a caller remains in the caller
pool.

Minimum Bond

The bond amount is set as the maximum allowed transaction cost for a given
block. This value can be retrieved with the getMinimumBond function.

	Solidity Function Signature: getMinimumBond() returns (uint)

	ABI Signature: 0x23306ed6

This value can change from block to block depending on the gas price and gas
limit.

Depositing your bond

Use the depositBond function on the Caller Pool to deposit ether towards
your bond.

	Solidity Function Signature: depositBond()

	ABI Signature: 0x741b3c39

Checking bond balance

Use the callerBonds function to check the balance of your bond.

	Solidity Function Signature: callerBonds(address) returns (uint)

	ABI Signature: 0xc861cd66

Withdrawing your bond

Use the withdrawBond function on the Caller Pool to withdraw the bond
ether.

	Solidity Function Signature: withdrawBond()

	ABI Signature: 0xc3daab96

If you are currently in a call pool, either active or queued, you will not be
able to withdraw your account balance below the minimum bond amount.

Bond Forfeiture

In the event that a caller fails to execute a scheduled call during their
allocated call window, a portion of their bond is forfeited and they are
removed from the caller pool. The amount forfeited is equal to the current
minimum bond amount.

There are no restrictions on re-entering the caller pool as long as a caller is
willing to put up a new bond.

About Pools

The Caller Pool contract maintains a lists of caller addresses. Whenver a
change is made to the pool, either addition of a new member or removal of an
existing member, a new pool is queued to take place of the current pool 512
blocks in the future. The new pool has all of the previous pool’s members plus
or minus whatever additions or removals take place.

During the first 256 blocks prior to a queued pool becoming active, additional
members may choose to enter or leave. The state of the queued pool becomes
frozen and cannot be changed starting at the 256 blocks leading up to the pool
becoming active.

Once the queued pool becomes active, members are once again allowed to enter
and exit the pool.

Each time a new pool is created, the ordering of its members is shuffled.

Note

It is worth pointing out that from the block during which you exit the
pool, you must still execute the calls that are allocated to you for the
next 512 blocks until the new queue becomes active. Failing to do so will
cause bond forfeiture.

Entering the Pool

An address can enter the caller pool if the following conditions are met.

	The caller has deposited the minimum bond amount into their account with the
Caller Pool.

	The caller is not in the active pool, or the next queued pool.

	The next queued pool does not go active within the next 256 blocks.

To enter the pool, call the enterPool function on the Caller Pool.

	Solidity Function Signature: enterPool()

	ABI Signature: 0x50a3bd39

If the appropriate conditions are met, you will be added to the next caller
pool. This will create a new pool if one has not already been created.
Otherwise you will be added to the next queued pool.

You can use the canEnterPool function to check whether a given address is
currently allowed to enter the pool.

	Solidity Function Signature: canEnterPool(address callerAddress) returns (bool)

	ABI Signature: 0x8dd5e298

Exiting the Pool

An address can exit the caller pool if the following conditions are met.

	The caller is in the current active pool.

	The caller has not already exited or been removed from the queued pool (if it
exists)

	The next queued pool does not go active within the next 256 blocks.

To exit the pool, use the exitPool function on the Caller Pool.

	Solidity Function Signature: exitPool()

	ABI Signature: 0x50a3bd39

If all conditions are met, a new caller pool will be queued if one has not
already been created and your address will be removed from it.

You can use the canExitPool function to check whether a given address is
currently allowed to exit the pool.

	Solidity Function Signature: canExitPool(address callerAddress) returns (bool)

	ABI Signature: 0xb010d94a

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Call Execution

Call execution is the process through which scheduled calls are executed at
their desired block number. After a call has been scheduled, it can be executed
by account which chooses to initiate the transaction. In exchange for
executing the scheduled call, they are paid a small fee of approximately 1% of
the gas cost used for executing the transaction.

Executing a call

Use the doCall function to execute a scheduled call.

	Solidity Function Signature: doCall(bytes32 callKey)

	ABI Signature: 0xfcf36918

When this function is called, the following things happen.

	A few are done to be sure that all of the necessary pre-conditions pass. If
any fail, the function exits early without executing the scheduled call:
	the scheduler has enough funds to pay for the execution.

	the call has not already been executed.

	the call has not been cancelled.

	the current block number is within the range this call is allowed to be
executed.

	The necessary funds to pay for the call are put on hold.

	The call is executed via either the authorizedAddress or
unauthorizedAddress depending on whether the scheduler is an authorized
caller.

	The gas cost and fees are computed, deducted from the scheduler’s account,
and deposited in the caller’s account.

Setting transaction gas and gas price

It is best to supply the maximum allowed gas when executing a scheduled call as
the payment amount for executing the call is porportional to the amount of gas
used. If the transaction runs out of gas, no payment is issued.

The payment is also dependent on the gas price for the executing transaction.
The lower the gas price supplied, the higher the payment will be. (though you
should make sure that the gas price is high enough that the transaction will
get picked up by miners).

Getting your payment

Payment for executing a call is deposited in your Alarm service account and can
be withdrawn using the account management api.

Determining what scheduled calls are next

The Alarm service uses Grove to facilitate querying for the next scheduled
call.

	Grove Contract Address: 0xfe9d4e5717ec0e16f8301240df5c3f7d3e9effef

The Grove Index

Grove tracks the ordering of data with indexes. You can retrieve the
bytes32 id one of two ways.

	From the Alarm service using the getGroveIndexId() function.

	From Grove using the getIndexId(address ownerAddress ,bytes32 indexName)

The index name used by Alarm is 'callTargetBlock'.

TODO: put in grove address and alarm address here.

Querying Grove

	query(bytes32 indexID, bytes2 operator, int value)

One you have the index id, you will want to use the query function on Grove
to get the first scheduled call after the current block.

> nodeId = grove.query.call(indexId, ">=", currentBlock)

This will return either 0x0 if there is no upcoming call, or a bytes32
node id for the first node in the tree that matches our query. With the node
id, we then need to fetch the value for the node id using the getNodeValu(bytes32 nodeId)e
function.

> targetBlock = grove.getNodeValue.call(nodeId)

The return value represents the targetBlock value for the call. If we
choose to execute this scheduled call when the block comes around, we need to
have the callKey. We can retrieve this with the getNodeId(bytes32 nodeId) function on
Grove since Alarm uses the callKey for each scheduled call as it’s id in
the grove index.

> callKey = grove.getNodeId.call(nodeId)

We should also check to see if there are more calls with the same target node.
We can do this with the getNextNode(bytes32 nodeId) function on grove.

> next_node = grove.getNextNode.call(nodeId)

You can then repeate this process until the targetBlock is beyond the point in the future that you care to monitor.

Note

40 blocks into the future is a good range to monitor since new calls must
always be scheduled at least 40 blocks in the future.

The Grove Documentation

Detailed information about grove can be found in Grove’s documentation.

Designated Callers

If the Caller Pool has any bonded callers in the current active pool, then only
designated callers will be allowed to execute a scheduled call. The exception
to this restriction is the last few blocks within the call’s grace period which
the call enters free-for-all mode during which anyone may execute it.

If there are no bonded callers in the Caller Pool then the Alarm service will
operate in free-for-all mode for all calls meaning anyone may execute any
call at any block during the call window.

How callers designated

Each call has a window during which it is allowed to be executed. This window
begins at the specified targetBlock and extends through targetBlock +
gracePeriod. This window is inclusive of it’s bounding blocks.

For each 4 block section of the call window, the caller pool associated with
the targetBlock is selected. The members of the pool can be though of as a
circular queue, meaning that when you iterate through them, when you reach the
last member, you start back over at the first member. For each call, a random
starting position is selected in the member queue and the 4 block sections of
the call window are assigned in order to the membes of the call pool beginning
at this randomly chosen index..

The last two 4 block sections (5-8 blocks depending on the gracePeriod) are not
allocated, but are considered free-for-all allowing anyone to call.

Use the getDesignatedCaller function to determine which caller from the
caller pool has been designated for the block.

	Solidity Function Signature: getDesignatedCaller(bytes32 callKey, uint targetBlock, uint8 gracePeriod, uint blockNumber) public returns (address)

	ABI Signature: 0xe8543d0d

	callKey: specifies the scheduled call.

	targetBlock: the target block for the specified call.

	gracePeriod: the grace period for the specified call.

	blockNumber: the block number (during the call window) in question.

This returns the address of the caller who is designated for this block, or
0x0 if this call can be executed by anyone on the specified block.

Missing the call window

Anytime a caller fails to execute a scheduled call during the 4 block window
reserved for them, the next caller has the opportunity to claim a portion of
their bond merely by executing the call during their window. When this
happens, the previous caller who missed their call window has the current
minimum bond amount deducted from their bond balance and transferred to the
caller who executed the call. The caller who missed their call is also removed
from the pool. This removal takes 512 blocks to take place as it occurs within
the same mechanism as if they removed themselves from the pool.

Free For All

When a call enters the last two 4-block chunks of its call window it enters
free-for-all mode. During these blocks anyone, even unbonded callers, can
execute the call. The sender of the executing transaction will be rewarded the
bond bonus from all callers who missed their call window.

Safeguards

There are a limited set of safeguards that Alarm protects those executing calls
from.

	Enforces the ability to pay for the maximum possible transaction cost up
front.

	Ensures that the call cannot cause the executing transaction to fail due to
running out of gas (like an infinite loop).

	Ensures that the funds to be used for payment are locked during the call
execution.

Tips for executing scheduled calls

The following tips may be useful if you wish to execute calls.

Only look in the next 40 blocks

Since calls cannot be scheduled less than 40 blocks in the future, you can
count on the call ordering remaining static for the next 40 blocks.

No cancellation in next 8 blocks

Since calls cannot be cancelled less than 8 blocks in the future, you don’t
need to check cancellation status during the 8 blocks prior to its target
block.

Check that it was not already called

If you are executing a call after the target block but before the grace period
has run out, it is good to check that it has not already been called.

Check that the scheduler can pay

It is good to check that the scheduler has sufficient funds to pay for the
call’s potential gas cost plus fees.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Call pricing and fees

The Alarm service operates under a scheduler pays model, which means that
the scheduler of a call is responsible for paying for the full gas cost and
fees associated with executing the call.

This payment is automatic and happens during the course of the execution of the scheduled call.

Minimum Balance

In order to guarantee reimbursment of gas costs and payment to the account
which executes the scheduled call, the scheduler of the call must have an
account balance sufficient to pay for the call at the time of execution.
Since, it is unknown how much gas the call will consume the Alarm service
requires a minimum balance equal to the maximum possible transaction cost plus
fees.

Call Fees and Caller Payment

The account which executes the scheduled call is reimbursed 100% of the gas
cost + payment for their service. The creator of the Alarm service is also
paid the same payment.

The payment value is computed with the formula 1% of GasUsed * BaseGasPrice *
GasPriceScalar where:

	GasUsed: is the total gas consumption for the call execution. This
includes all of the gas used by the Alarm service to do things like looking
up call data, checking for sufficient account balance to pay for the call,
paying the caller, etc.

	BaseGasPrice is the gas price that was used by the scheduler when they
scheduled the function call.

	GasPriceScalar is a multiplier that ranges from 0 - 2 which is based on
the difference between the gas priced used for call execution and the gas
price used during call scheduling. This number incentivises the call
executor to use as low a gas price as possible.

The GasPriceScalar multiplier

This multiplier is computed with the following formula.

	IF gasPrice > baseGasPrice

baseGasPrice / gasPrice

	IF gasPrice <= baseGasPrice

baseGasPrice / (2 * baseGasPrice - gasPrice)

Where:

	baseGasPrice is the tx.gasprice used when the call was scheduled.

	gasPrice is the tx.gasprice used to execute the call.

At the time of call execution, the baseGasPrice has already been set, so
the only value that is variable is the gasPrice which is set by the account
executing the transaction. Since the scheduler is the one who ends up paying
for the actual gas cost, this multiplier is designed to incentivize the caller
using the lowest gas price that can be expected to be reliably picked up and
promptly executed by miners.

Here are the values this formula produces for a baseGasPrice of 20 and a
gasPrice ranging from 10 - 40 which uses 5000 gas;

	gasPrice
	multiplier
	payout

	15
	1.20
	120

	16
	1.17
	117

	17
	1.13
	113

	18
	1.09
	109

	19
	1.05
	105

	20
	1.00
	100

	21
	0.95
	95

	22
	0.91
	91

	23
	0.87
	87

	24
	0.83
	83

	25
	0.80
	80

	26
	0.77
	77

	27
	0.74
	74

	28
	0.71
	71

	29
	0.69
	69

	30
	0.67
	67

	31
	0.65
	65

	32
	0.63
	63

	33
	0.61
	61

	34
	0.59
	59

	35
	0.57
	57

	36
	0.56
	56

	37
	0.54
	54

	38
	0.53
	53

	39
	0.51
	51

	40
	0.50
	50

You can see from this table that as the gasPrice for the executing
transaction increases, the total payout for executing the call decreases. This
provides a strong incentive for the entity executing the transaction to use a
reasonably low value.

Alternatively, if the gasPrice is set too low (potentially attempting to
maximize payout) and the call is not picked up by miners in a reasonable amount
of time, then the entity executing the call will not get paid at all. This
provides a strong incentive to provide a value high enough to ensure the
transaction will be executed.

Overhead

The gas overhead that you can expect to pay for your function call is
approximately 146287.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Contract ABI

Beyond the simplest use cases, the use of address.call to interact with the
Alarm service is limiting. Beyond the readability issues, it is not possible
to get the return values from function calls when using call().

By using an abstract solidity contract which defines all of the function
signatures, you can easily call any of the Alarm service’s functions, letting
the compiler handle computation of the function ABI signatures.

Abstract Solidity Contracts

The following abstract contracts can be used alongside your contract code to
interact with the Alarm and CallerPool service.

Abstract Alarm Contract Source Code

contract AlarmAPI {
 /*
 * Account Management API
 */
 function accountBalances(address account) public returns (uint);

 event Deposit(address indexed _from, address indexed accountAddress, uint value);
 function deposit(address accountAddress) public;

 event Withdraw(address indexed accountAddress, uint value);
 function withdraw(uint value) public;

 /*
 * Authorization API
 */
 function unauthorizedAddress() public returns (address);
 function authorizedAddress() public returns (address);
 function addAuthorization(address schedulerAddress) public;
 function removeAuthorization(address schedulerAddress) public;
 function checkAuthorization(address schedulerAddress, address contractAddress) public returns (bool);

 /*
 * Scheduled Call Meta API
 */
 function getLastCallKey() public returns (bytes32);
 function getLastDataHash() public returns (bytes32);
 function getLastDataLength() public returns (uint);
 function getLastData() public returns (bytes);

 function getCallContractAddress(bytes32 callKey) public returns (address);
 function getCallScheduledBy(bytes32 callKey) public returns (address);
 function getCallCalledAtBlock(bytes32 callKey) public returns (uint);
 function getCallGracePeriod(bytes32 callKey) public returns (uint);
 function getCallTargetBlock(bytes32 callKey) public returns (uint);
 function getCallBaseGasPrice(bytes32 callKey) public returns (uint);
 function getCallGasPrice(bytes32 callKey) public returns (uint);
 function getCallGasUsed(bytes32 callKey) public returns (uint);
 function getCallABISignature(bytes32 callKey) public returns (bytes4);
 function checkIfCalled(bytes32 callKey) public returns (bool);
 function checkIfSuccess(bytes32 callKey) public returns (bool);
 function checkIfCancelled(bytes32 callKey) public returns (bool);
 function getCallDataHash(bytes32 callKey) public returns (bytes32);
 function getCallPayout(bytes32 callKey) public returns (uint);
 function getCallFee(bytes32 callKey) public returns (uint);
 function getCallData(bytes32 callKey) public returns (bytes);

 /*
 * Call Data Registration API
 */
 event DataRegistered(bytes32 indexed dataHash);

 /*
 * Call Scheduling API
 */
 event CallScheduled(bytes32 indexed callKey);
 event CallRejected(bytes32 indexed callKey, bytes12 reason);
 event CallCancelled(bytes32 indexed callKey);

 function getCallKey(address scheduledBy, address contractAddress, bytes4 abiSignature, bytes32 dataHash, uint targetBlock, uint8 gracePeriod, uint nonce) public returns (bytes32);
 function scheduleCall(address contractAddress, bytes4 abiSignature, bytes32 dataHash, uint targetBlock) public;
 function scheduleCall(address contractAddress, bytes4 abiSignature, bytes32 dataHash, uint targetBlock, uint8 gracePeriod) public;
 function scheduleCall(address contractAddress, bytes4 abiSignature, bytes32 dataHash, uint targetBlock, uint8 gracePeriod, uint nonce) public;
 function cancelCall(bytes32 callKey) public;

 /*
 * Grove data getters
 */
 function getGroveAddress() constant returns (address);
 function getGroveIndexName() constant returns (bytes32);
 function getGroveIndexId() constant returns (bytes32);

 /*
 * Call Execution API
 */
 event CallExecuted(address indexed executedBy, bytes32 indexed callKey);
 event CallAborted(address indexed executedBy, bytes32 indexed callKey, bytes18 reason);

 function doCall(bytes32 callKey) public;
 function getCallMaxCost(bytes32 callKey) public returns (uint);
 function getCallFeeScalar(uint baseGasPrice, uint gasPrice) public returns (uint);

 function getCallerPoolAddress() public returns (address);
}

Register Data is special

You may notice that the contract above is missing the registerData
function. This is because it is allowed to be called with any call signature
and solidity has no way of defining such a function.

Registering your data requires use of the address.call() api.

Abstract CallerPool Contract Source Code

contract CallerPoolAPI {
 /*
 * Bond managment API.
 */
 function callerBonds(address callerAddress) public returns (uint);
 function getMinimumBond() public returns (uint);
 function depositBond() public;
 function withdrawBond(uint value) public;

 /*
 * CallerPool <=> Alarm api.
 */
 function getDesignatedCaller(bytes32 callKey, uint targetBlock, uint8 gracePeriod, uint blockNumber) public returns (address);

 event AwardedMissedBlockBonus(address indexed fromCaller, address indexed toCaller, uint indexed poolNumber, bytes32 callKey, uint blockNumber, uint bonusAmount);

 /*
 * Pool querying
 */
 function poolHistory(uint index) returns (uint);
 function getPoolKeyForBlock(uint blockNumber) public returns (uint);
 function getActivePoolKey() public returns (uint);
 function getNextPoolKey() public returns (uint);
 function getPoolSize(uint poolKey) constant returns (uint);
 function getPoolFreezeDuration() constant returns (uint);
 function getPoolMinimumLength() constant returns (uint);

 /*
 * Pool membership API
 */
 function isInAnyPool(address callerAddress) public returns (bool);
 function isInPool(address callerAddress, uint poolNumber) public returns (bool);

 /*
 * Enter/Exit pool API
 */
 function canEnterPool(address callerAddress) public returns (bool);
 function canExitPool(address callerAddress) public returns (bool);
 function enterPool() public;
 function exitPool() public;
}

Only use what you need

The contracts above have stub functions for every API exposed by Alarm and
CallerPool. It is safe to remove any functions or events from the abstract
contracts that you do not intend to use.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Caller Pool API

The Caller Pool contract exposes the following api functions.

Bond Management

The following functions are available for managing the ether deposited as a
bond with the Caller Pool.

Get Minimum Bond

Use the getMinimumBond function to retrieve the current minimum bond value
required to be able to enter the caller pool.

	Solidity Function Signature: getMinimumBond() returns (uint)

	ABI Signature: 0x23306ed6

Check Bond Balance

Use the callerBonds function to check the bond balance for the provided
address.

	Solidity Function Signature: callerBonds(address callerAddress) returns (uint)

	ABI Signature: 0xc861cd66

Deposit Bond

Use the depositBond function to deposit you bond with the caller pool.

	Solidity Function Signature: depositBond()

	ABI Signature: 0x741b3c39

Withdraw Bond

Use the withdrawBond function to withdraw funds from your bond.

	Solidity Function Signature: withdrawBond()

	ABI Signature: 0xc3daab96

When in either an active or queued caller pool, you cannot withdraw your
account below the minimum bond value.

Call Scheduling and Execution

The following function is available for callers.

Get Designated Caller

Use the getDesignatedCaller function to retrieve which caller address, if
any, is designated as the caller for a given block and scheduled call.

	Solidity Function Signature: getDesignatedCaller(bytes32 callKey, uint targetBlock, uint8 gracePeriod, uint blockNumber) public returns (address)

	ABI Signature: 0xe8543d0d

	callKey: specifies the scheduled call.

	targetBlock: the target block for the specified call.

	gracePeriod: the grace period for the specified call.

	blockNumber: the block number (during the call window) in question.

This returns the address of the caller who is designated for this block, or
0x0 if this call can be executed by anyone on the specified block.

Pool Information

The following functions are available to query information about call pools.

Pool History

Use the poolHistory function to lookup historical caller pools.

	Solidity Function Signature: poolHistory(uint index) returns (uint)

	ABI Signature: 0x910789c4

This function can be used to return the nth caller pool, where index is the
0-indexed number of the desired caller pool. Returns the poolKey which can
be used to reference the caller pool. The poolKey is also the block number
that the pool became active.

Get Pool Key for Block

Use the getPoolKeyForBlock function to return the poolKey that should
be used for the given block number.

	Solidity Function Signature: getPoolKeyForBlock(uint blockNumber) returns (uint)

	ABI Signature: 0xaec918c7

Get Active Pool Key

Use the getActivePoolKey function to retrieve the poolKey for the
caller pool that is currently active.

	Solidity Function Signature: getActivePoolKey() returns (uint)

	ABI Signature: 0xa6814e8e

Get Next Pool Key

Use the getNextPoolKey function to retrieve the poolKey that is
currently queued up next.

	Solidity Function Signature: getNextPoolKey() returns (uint)

	ABI Signature: 0xc4afc3fb

Returns 0 if there is no caller pool queued.

Get Pool Size

Use the getPoolSize function to lookup the size of a given pool.

	Solidity Function Signature: getPoolSize(uint poolKey) returns (uint)

	ABI Signature: 0x6595f73a

Pool Membership

The following functions can be used to query about an address’s pool
membership.

Is In Any Pool

Use the isInAnyPool function to query whether an address is in either the
currently active caller pool or the queued caller pool.

	Solidity Function Signature: isInAnyPool(address callerAddress) returns (bool)

	ABI Signature: 0x84c92c9a

Is In Pool

Use the isInPool function to query whether an address is in a specific pool.

	Solidity Function Signature: isInPool(address callerAddress, uint poolKey) returns (bool)

	ABI Signature: 0x19f74e1f

Entering and Exiting Pools

The following functions can be used for actions related to entering and exiting
the call pool.

Can Enter Pool

Use the canEnterPool function to query whether or not you are allowed to
enter the caller pool.

	Solidity Function Signature: canEnterPool() returns (bool)

	ABI Signature: 0x8dd5e298

Can Exit Pool

Use the canExitPool function to query whether or not you are allowed to
exit the caller pool.

	Solidity Function Signature: canExitPool() returns (bool)

	ABI Signature: 0xb010d94a

Enter Pool

Use the enterPool function to enter the caller pool.

	Solidity Function Signature: enterPool() returns (bool)

	ABI Signature: 0x50a3bd39

Exit Pool

Use the exitPool function to exit the caller pool.

	Solidity Function Signature: exitPool() returns (bool)

	ABI Signature: 0x29917954

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Scheduled Call API

The Alarm service exposes getter functions for all call information that may be
important to those scheduling or executing calls.

Properties of a Scheduled Call

	bytes32 callKey: the unique identifier for this function call.

	address contractAddress: the address of the contract the function should be called on.

	address scheduledBy: the address who scheduled the call.

	uint calledAtBlock: the block number on which the function was called.
(0 if the call has not yet been executed.)

	uint targetBlock: the block that the function should be called on.

	uint8 gracePeriod: the number of blocks after the targetBlock during
which it is stll ok to execute the call.

	uint nonce: value to differentiate multiple identical calls that should
happen simultaneously.

	uint baseGasPrice: the gas price that was used when the call was
scheduled.

	uint gasPrice: the gas price that was used when the call was executed.
(0 if the call has not yet been executed.)

	uint gasUsed: the amount of gas that was used to execute the function
call (0 if the call has not yet been executed.)

	uint payout: the amount in wei that was paid to the address that executed
the function call. (0 if the call has not yet been executed.)

	uint fee: the amount in wei that was kept to pay the creator of the Alarm
service. (0 if the call has not yet been executed.)

	bytes4 sig: the 4 byte ABI function signature of the function on the
contractAddress for this call.

	bool isCancelled: whether the call was cancelled.

	bool wasCalled: whether the call was called.

	bool wasSuccessful: whether the call was successful.

	bytes32 dataHash: the sha3 hash of the data that should be used for
this call.

Call Key

bytes32 callKey

The following functions are available on the Alarm service. The vast majority
of them take the callKey which is an identifier used to reference a
scheduled call.

The callKey is computed as sha3(scheduledBy, contractAddress, signature, dataHash, targetBlock, gracePeriod, nonce) where:

	scheduledBy: the address that scheduled the call.

	contractAddress: the address of the contract that the function should
be called on when this call is executed.

	signature: the byte4 ABI function signature of the function that
should be called.

	dataHash: the bytes32 sha3 hash of the call data that should be used
for this scheduled call.

	targetBlock: the uint256 block number that this call should be executed on.

	gracePeriod: the uint8 number of blocks after targetBlock during
which it is still ok to execute this scheduled call.

	nonce: the uint256 value that can be used to distinguish between
multiple calls with identical data that should occur during the same time.
This value only matters if you are registering multiple calls for which all
of the other fields are the same.

Contract Address

address contractAddress

The address of the contract that the scheduled function call should be executed
on. Retrieved with the getCallContractAddress function.

	Solidity Function Signature: getCallContractAddress(bytes32 callKey) returns (address)

	ABI Signature: 0x9c975df

Scheduled By

address scheduledBy

The address of the contract that the scheduled function call should be executed
on. Retrieved with the getCallScheduledBy function.

	Solidity Function Signature: getCallScheduledBy(bytes32 callKey) returns (address)

	ABI Signature: 0x8b37e656

Called at Block

uint calledAtBlock

The block number that this call was executed. Retrieved with the
getCallCalledAtBlock function. Returns 0 if the call has not been
executed yet.

	Solidity Function Signature: getCallCalledAtBlock(bytes32 callKey) returns (uint)

	ABI Signature: 0xe4098655

Grace Period

uint8 gracePeriod

The number of blocks after the targetBlock that it is still ok to execute
this call. Retrieved with the getCallGracePeriod function.

	Solidity Function Signature: getCallGracePeriod(bytes32 callKey) returns (uint8)

	ABI Signature: 0x34c19b93

Target Block

uint targetBlock

The block number that this call should be executed on. Retrieved with the
getCallTargetBlock function.

	Solidity Function Signature: getCallTargetBlock(bytes32 callKey) returns (uint)

	ABI Signature: 0x234917d4

Base Gas Price

uint baseGasPrice

The value of tx.gasprice that was used to schedule this function call.
Retrieved with the getCallBaseGasPrice function. Returns 0 if the call
has not been executed yet.

	Solidity Function Signature: getCallBaseGasPrice(bytes32 callKey) returns (uint)

	ABI Signature: 0x77b19cd5

Gas Price

uint gasPrice

The value of tx.gasprice that was used to execute this function call.
Retrieved with the getCallGasPrice function. Returns 0 if the call has
not been executed yet.

	Solidity Function Signature: getCallGasPrice(bytes32 callKey) returns (uint)

	ABI Signature: 0x78bc6460

Gas Used

uint gasUsed

The amount of gas that was used during execution of this function call.
Retrieved with the getCallGasUsed function. Returns 0 if the call has
not been executed yet.

	Solidity Function Signature: getCallGasUsed(bytes32 callKey) returns (uint)

	ABI Signature: 0x86ae9e4

Signature

bytes4 signature

The ABI function signature that should be used to execute this function call.
Retrieved with the getCallSignature function.

	Solidity Function Signature: getCallSignature(bytes32 callKey) returns (uint)

	ABI Signature: 0xc88edaed

Was Called

bool wasCalled

Boolean flag for whether or not this function has been called yet. Retrieved
with the checkIfCalled function.

	Solidity Function Signature: checkIfCalled(bytes32 callKey) returns (bool)

	ABI Signature: 0x2a472ae8

Was Successful

bool wasSuccessful

Boolean flag for whether or not this function call was successful when
executed. Retrieved with the checkIfSuccess function.

	Solidity Function Signature: checkIfSuccess(bytes32 callKey) returns (bool)

	ABI Signature: 0x6ffc0896

Is Cancelled

bool isCancelled

Boolean flag for whether or not this function call was cancelled. Retrieved
with the checkIfCancelled function.

	Solidity Function Signature: checkIfCancelled(bytes32 callKey) returns (bool)

	ABI Signature: 0xaa4cc01f

Call Data Hash

bytes32 dataHash

The sha3 hash of the call data that will be used for this function call. Retrieved
with the getCallDataHash function.

	Solidity Function Signature: getCallDataHash(bytes32 callKey) returns (bytes32)

	ABI Signature: 0xf9f447eb

Call Data

bytes data

The full call data that will be used for this function call. Retrieved
with the getCallData function.

	Solidity Function Signature: getCallData(bytes32 callKey) returns (bytes)

	ABI Signature: 0x75428615

Payout

uint payout

The amount in wei that was paid to the account that executed this function
call. Retrieved with the getCallPayout function. If the function has not
been executed this will return 0.

	Solidity Function Signature: getCallPayout(bytes32 callKey) returns (uint)

	ABI Signature: 0xa9743c68

Fee

uint fee

The amount in wei that was paid to the creator of the Alarm service.
Retrieved with the getCallFee function. If the function has not
been executed this will return 0.

	Solidity Function Signature: getCallFee(bytes32 callKey) returns (uint)

	ABI Signature: 0xfc300522

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Events

The following events are used to log notable events within the Alarm service.

Alarm Events

The primary Alarm service contract logs the following events.

Deposit

	Solidity Event Signature: Deposit(address indexed _from, address indexed accountAddress, uint value)

	ABI Signature: 0x5548c837

Executed anytime a deposit is made into an address’s Alarm account.

Withdraw

	Solidity Event Signature: Withdraw(address indexed accountAddress, uint value)

	ABI Signature: 0x884edad9

Executed anytime a withdrawl is made from an address’s Alarm account.

Call Scheduled

	Solidity Event Signature: CallScheduled(bytes32 indexed callKey)

	ABI Signature: 0x5ca1bad5

Executed when a new scheduled call is created.

Call Executed

	Solidity Event Signature: CallExecuted(address indexed executedBy, bytes32 indexed callKey)

	ABI Signature: 0xed1062ba

Executed when a scheduled call is executed.

Call Aborted

	Solidity Event Signature: CallAborted(address indexed executedBy, bytes32 indexed callKey, bytes18 reason)

	ABI Signature: 0x84b46e45

Executed when an attempt is made to execute a scheduled call is rejected. The
reason value in this log entry contains a short string representation of
why the call was rejected.

Caller Pool Events

The Caller Pool contract logs the following events.

Added To Pool

	Solidity Event Signature: AddedToPool(address indexed callerAddress, uint indexed pool)

	ABI Signature: 0xa192e48a

Executed anytime a new address is added to the caller pool.

Removed From Pool

	Solidity Event Signature: RemovedFromPool(address indexed callerAddress, uint indexed pool)

	ABI Signature: 0xeee53013

Executed anytime an address is removed from the caller pool.

Awarded Missed Block Bonus

	Solidity Event Signature: AwardedMissedBlockBonus(address indexed fromCaller, address indexed toCaller, uint indexed poolNumber, bytes32 callKey, uint blockNumber, uint bonusAmount)

	ABI Signature: 0x47d4e871

Executed anytime a pool member’s bond is awarded to another address due to them
missing a scheduled call that was designated as theirs to execute.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Changelog

0.3.0

	Convert Alarm service to use Grove [https://github.com/pipermerriam/ethereum-grove] for tracking scheduled call ordering.

	Enable logging most notable Alarm service events.

	Two additional convenience functions for invoking scheduleCall with
gracePeriod and nonce as optional parameters.

0.2.0

	Fix for Issue 42 [https://github.com/pipermerriam/ethereum-alarm-clock/issues/42]. Make the free-for-all bond bonus restrict itself to the
correct set of callers.

	Re-enable the right tree rotation in favor of removing three getLastX
function. This is related to the pi-million gas limit which is restricting
the code size of the contract.

0.1.0

	Initial release.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Ethereum Alarm Clock 1.0.0 documentation

Index

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Ethereum Alarm Clock 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

_static/down.png

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

