

 Navigation

 	
 index

 	
 next |

 	Ethereum Alarm Clock 1.0.0 documentation

Welcome to Ethereum Alarm Clock’s documentation!

The Ethereum Alarm Clock is a service that allows scheduling of contract
function calls at a specified block number in the future. These scheduled
calls are executed by other nodes on the ethereum network in exchange for a
small payment and reimbursment of gas costs.

The service is completely trustless, open source, and verifiable.

Contents:

	What is it?

	Overview
	Scheduling Function Calls
	Call Scheduling

	Execution of scheduled calls
	Cost

	Guarantees
	Will the call happen?

	Will I get paid for executing a call?

	Scheduling
	Lifecycle of a Call Contract

	Scheduling the Call
	Call Configuration

	Alternate Call Signatures

	Call Contract Address
	Contract scheduling its own call

	Upfront Payment

	Call Data

	Cancelling a call

	Looking up a Call

	Helper Functions

	Call Contract API
	Properties of a Call Contract
	Contract Address

	Scheduler Address

	Target Block

	Grace Period

	Anchor Gas Price

	Required Gas

	Base Payment

	Base Fee

	ABI Signature

	Call Data

	Call Value

	Was Called

	Was Successful

	Is Cancelled

	Claimer

	Claim Amount

	Claim Deposit

	Functions of a Call Contract
	Cancel

	Execute

	Claim Helpers

	Call Execution
	Executing a call
	Payment

	Setting transaction gas and gas price

	Getting your payment

	Determining what scheduled calls are next

	The Freeze Window

	Claiming a call
	Claim Amount

	Getting your Deposit Back

	Claim API

	Safeguards

	Tips for executing scheduled calls
	Look in the next 265 blocks

	Calls are frozen during the 10 blocks prior to the target block

	No cancellation in next 265 blocks

	Check that it was not already called

	Compute how much gas to provide

	Reliability

	Execution Client
	Running the Scheduler
	Call Claiming

	Call Execution

	Checks

	Other Things You Should Know

	Running a server
	1. Setup an EC2 Instance

	2. Provision the Server

	3. Mount the extra volume

	4. Install Geth

	5. Install the Alarm Client

	6. Configure Supervisord

	7. Generate geth account

	8. Turn it on

	9. Monitoring

	Costs
	Call Payment and Donation

	Default Payment Value

	Gas Costs

	The Gas Price Scalar multiplier

	Contract ABI
	Abstract Solidity Contracts
	Abstract Scheduler Contract Source Code

	Abstract Call Contract Source Code

	Only use what you need

	Contract ABI
	Scheduler ABI

	Call Contract ABI

	Events
	Scheduler Events
	Call Scheduled

	Call Rejected

	Call Contract Events
	Call Executed

	Call Aborted

	Terminology
	General

	Calls and Call Scheduling

	Changelog
	0.6.0

	0.6.0

	0.5.0

	0.4.0

	0.3.0

	0.2.0

	0.1.0

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

What is it?

Alarm is a service that operates on the Ethereum world computer.

Within the network there are two types of accounts.

	Contracts: Controlled by a piece of code that has been deployed to the
Ethereum network.

	Private Key: Accounts that are controlled by a private key which is used to
sign transaction.

The only difference between the capabilities of these two types of accounts is
that only Private Key based accounts can initiate the execution of code which
is done by sending a signed transaction into the Ethereum network.

A common requirement for software systems is execution of code at a specified
time in the future. An example of one such mechanism is the crontab on unix
based systems.

The Alarm service serves a similar purpose to Contracts on Ethereum. Since
contracts are unable to initiate transactions themselves, the Alarm service
sets up a marketplace that allows the operator of a private key based account
to claim a reward in exchange for initiating the required transaction.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Overview

The Ethereum Alarm service is a contract on the ethereum network that
facilitates scheduling of function calls for a specified block in the future.
It is designed to require zero trust between any of the users of the
service, as well as providing no special access to any party (including the
author of the service)

Scheduling Function Calls

Contracts, or individuals can schedule a function calls with the Alarm
service by doing the following.

	Schedule the function call with the service, providing basic information
such as what function to call and when it should be called.

	Register any call data that will be required to make the function call
(optional for functions that have no arguments).

Call Scheduling

Function calls can be scheduled for any block at least 10 blocks (~3 minutes)
in the future. Scheduling is done by calling the scheduleCall function on
the scheduling contract. This function has a wide variety of call signatures
that allow the scheduler to specify any of the following information.

	Contract address the call should be executed on.

	ABI signature of the function that should be called.

	Bytes of call data that should be passed along.

	Value in Ether to be sent with the call.

	Target block number that the call should be executed on.

	Number of blocks after the target block during which it still ok to execute
the call. (between 64 - 255 blocks)

	Required gas that must be provided with the executing transaction.

	Stack depth check.

	Payment amount in wei that will be paid to the executor of the call.

	Donation amount in wei that will be paid to the creator of the Alarm
service.

The scheduling transaction must also include enough ether to pay for the gas
costs of the call as well as the payment and fee values.

Execution of scheduled calls

Scheduled function calls can be executed by anyone who wishes to initiate the
transaction who inturn is paid whatever amount was specified as the payment
value for the call.

Cost

In addition to the gas costs, schedulers are also encouraged include a payment
amount for the executor of the call. This value can be specified by the
scheduler, meaning that you may choose to offer any amount for the execution of
your function.

The scheduling function uses the following defaults if specific values are not
provided.

	Payment to the executor: market value

	Payment to the service creator: 1/100th market value

The market value is determined by the market history of scheduled calls.

Guarantees

Will the call happen?

There are no guarantees that your function will be called. This is not a
shortcoming of the service, but rather a fundamental limitation of the ethereum
network. Nobody is capable of forcing a transaction to be included in a
specific block.

The Alarm service has been designed such that it should become more
reliable as more people use it.

However, it is entirely possible that certain calls will be missed
due to unforseen circumstances. Providing a higher Payment amount is a
potential way to get your scheduled call handled at a higher priority as it
will be more profitable to execute.

Will I get paid for executing a call?

If you are diligent about how you go about executing scheduled calls then
executing scheduled calls is guaranteed to be profitable. See the section on
executing calls for more information.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Scheduling

Call scheduling is the core of the Ethereum Alarm Service. Calls can be
scheduled on any block at least 40 blocks (~10 minutes) in the future.

When a call is scheduled, the service deploys a new contract that represents
the scheduled function call. This contract is referred to as the call
contract. It holds all of the metadata associated with the call as well as
the funds that will be used to pay for the call.

Lifecycle of a Call Contract

	creation - The call contract is created as part of call scheduling.

	pending - The call can be cancelled anytime prior to the claim stage.

	claim - The contract can be claimed which will grant the claimer
exclusive rights to execution during the first 16 blocks of the call window.

	frozen - The contract is frozen, preventing cancellation starting 10 blocks
before the call’s target block through the last block in the call window.

	execution - The executing transaction is sent, which triggers the call
contract to execute the function call.

	payment - payments are sent to the executor and the creator of the alarm
service.

	finalization - The contract sends any remaining funds to the address
which scheduled the call.

Scheduling the Call

Function calls are scheduled with the scheduleCall function on the Alarm
service. This creates a new call contract that represents the function
call. The primary signature for this function which accepts all allowed
configuration options is as follows.

function scheduleCall(address contractAddress,
 bytes4 abiSignature,
 bytes callData,
 uint16 requiredStackDepth,
 uint8 gracePeriod,
 uint[5] args) public returns (address);

The uint[5] args is an array of 5 uint256 values which are respectively
callValue, targetBlock, requiredGas, basePayment,
baseDonation.

var (callValue, targetBlock, requiredGas, basePayment, baseDonation) = args;

There are a total of 10 available configuration options for a scheduled call.

	address contractAddress

	bytes4 abiSignature

	bytes callData

	uint16 requiredStackDepth

	uint8 gracePeriod

	callValue

	targetBlock

	requiredGas

	basePayment

	baseDonation

Call Configuration

address contractAddress:

The address of the contract that the call should be called on.

	Default: msg.sender of the scheduling transaction.

bytes4 abiSignature:

The 4 byte ABI signature of the function to be called.

	Default: N/A. If omitted this value is not used.

Note

This configuration is a convenience feature. It is perfectly fine to
exclude this value and have the 4-byte function signature as part of the
callData.

bytes callData:

	Default: N/A. If omitted this value is not used.

Note

If the abiSignature argument was specified then this should not include
the 4-byte function signature. Otherwise the call will be double
prefixed with the function signature which is likely not what you want.

uint callValue:

The amount in wei that will be sent as part of call execution.

	Default: 0

uint targetBlock:

The block number the call should be executed on. This must be at least 10
blocks in the future.

	Default: 10 blocks from the current block.

uint8 gracePeriod:

The number of blocks after targetBlock during which the call may still be
executed. Cannot be less than 64 or greater than 255.

	Default: 255

uint requiredGas:

The amount of gas required to be sent along with the executing transaction.
This value cannot be less than 200,000 or more than the block gas limit minus
200,000 (block.gaslimit - 200000).

Call execution requires that at least this amount of gas be provided

	Default: 200,000.

uint16 requiredStackDepth:

The number of call stack frames should be checked prior to execution of the
function call cannot be less than 10 or greater than 1,000.

If the call is being executed by another contract, call execution will verify
that the stack depth can be extended by this value.

	Default: 10

uint basePayment:

The base amount in wei that will be used to calculate the amount paid to the
executor of the call.

	Default: The current market value of a scheduled call.

uint baseDonation:

The base amount in wei that will be used to calculate the amount donated to the
creator of the service.

	Default: 1/100th of the current market value of a scheduled call.

Alternate Call Signatures

The scheduleCall function has many alternate call signatures that are
intended for simpler use in common use cases.

	scheduleCall()

If called with no arguments then the scheduled call will execute a bare
addr.call() where addr is the msg.sender from when the call was
scheduled.

	scheduleCall(bytes callData)

In this case, the target of the call will be msg.sender from when the call
was scheduled, but the callData will be passed into the call
(addr.call(callData))

	scheduleCall(bytes4 abiSignature)

This is very similar to scheduleCall(bytes callData) except that it can
make it easy to execute a specific function that takes no arguments.

	scheduleCall(uint256 callValue, address contractAddress)

	scheduleCall(address contractAddress, uint256 targetBlock, uint256 callValue)

These signature can be used to easily schedule sending ether to another
address.

The exhaustive list of signatures for scheduleCall can be found below.

Call Contract Address

Since each scheduled call is deployed as a standalone contract it can be useful
to have the address for the call contract.

If the scheduleCall function is being used from within a contract, the
address of the newly created call contract is returned. If instead, the
function is being called directly in a transaction, the address of the call
contract can be extracted from the transaction logs under the CallScheduled
event.

Contract scheduling its own call

Contracts can take care of their own call scheduling.

contract Lottery {
 address scheduler; // set by some other mechanism.

 function beginLottery() public {
 ... // Do whatever setup needs to take place.

 // Now we schedule the picking of the winner.

 // the 4-byte signature of the local function we want to be called.
 bytes4 sig = bytes4(sha3("pickWinner()"));

 // approximately 24 hours from now
 uint targetBlock = block.number + 5760;

 // the 4-byte signature of the scheduleCall function.
 bytes4 scheduleCallSig = bytes4(sha3("scheduleCall(bytes4,uint256)"));

 scheduler.call(scheduleCallSig, sig, targetBlock)
 }

 function pickWinner() public {
 ...
 }
}

In this example Lottery contract, every time the beginLottery function
is called, a call to the pickWinner function is scheduled for approximately
24 hours later (5760 blocks).

Upfront Payment

The service requires that you pay upfront for all costs associated with call
scheduling. This value is referred to as the endowment. Without intimate
knowledge of how all of these things are calculated it can be difficult to
determine how much to send.

One nice part about the service is that you can just send extra and anything
unused will be returned to you. This is generally a good strategy since you
are at no risk of losing your ether and it prevents situations where you come
in slightly under the required endowment and have your call rejected.

The following functions are available to assist in computing this ether value.

	getMinimumEndowment() constant returns (uint)

	getMinimumEndowment(uint basePayment) constant returns (uint)

	getMinimumEndowment(uint basePayment, uint baseDonation) constant returns (uint)

	getMinimumEndowment(uint basePayment, uint baseDonation, uint callValue) constant returns (uint)

	getMinimumEndowment(uint basePayment, uint baseDonation, uint callValue, uint requiredGas) constant returns (uint)

Call Data

If a function call requires arguments then you have two options available.

	Provide the bytes as the callData argument at the time of scheduling.

	Register the bytes after the call has already been scheduled.

The call contract allows for call data registration via two mechanisms. The
primary mechanism is through the fallback function on the contract. This will
set the call data as the full call data of the transaction.

For example, if you were registering the call data for a function with the
signature myFunction(uint count, bytes32 reason) you could do it with the
following solidity code.

address scheduler = 0x...;
// schedule the call
address callContract = scheduler.call(...);

// Register the call data
scheduler.call(12345, 'abcde');

Alternatively you can use the registerData() function which will strip the
first four bytes off of msg.data and use the remainder as the call data.

In solidity, this would look something like the following.

contract Example {
 function doDataRegistration() public {
 uint arg1 = 3;
 int arg2 = -1;
 to.call(bytes4(sha3("registerData()")), arg1, arg2);
 }
}

Once data has been registered, it cannot be modified. Attempts to do so will
result in an exception.

Note

The call() function on an address in solidity does not do any ABI encoding,
so in cases where a scheduled call must pass something like a bytes
variable, you will need to handle the ABI encoding yourself.

Cancelling a call

A scheduled call can be cancelled by its scheduler either before the claim
window begins.

	Solidity Function Signature: cancel()

This will cause the call to be set as cancelled, which will return any
funds currently being held by the contract.

A call may also be cancelled after the call window if it has not been executed.

Looking up a Call

You can lookup whether a particular address is a known scheduled call with the
isKnownCall function.

	Solidity Function Signature: isKnownCall(address callAddress) returns (bool)

Returns a boolean as to whether this address represents a known scheduled call.

Helper Functions

The following getters can be used to return the constant values that are used
by the service programatically.

	callAPIVersion() constant returns (uint)

Returns the version of the Alarm service.

	getMinimumGracePeriod() constant returns (uint)

The smallest value allowed for the gracePeriod of a scheduled call.

	getDefaultDonation() constant returns (uint)

The default payment value for scheduled calls.

	getMinimumCallGas() constant returns (uint)

The minimum allowed value for requiredGas

	getMaximumCallGas() constant returns (uint)

The maximum allowed value for requiredGas. This value is computed as
block.gaslimit - getMinimumCallGas()

	getDefaultRequiredGas() constant returns (uint)

The default value for requiredGas

	isKnownCall(address callAddress) constant returns (bool)

Returns whether this address was a call contract that was deployed by the alarm
service. This can be useful if you need to use the service to interact with
priviledged functions as you can verify that the address that is calling you is
in fact a legitimate call contract.

	getFirstSchedulableBlock() constant returns (uint)

Returns the earliest block number in the future on which a call may be scheduled.

	getMinimumStackCheck() constant returns (uint16)

The minimum allowed value for requiredStackDepth.

	getMaximumStackCheck() constant returns (uint16)

The maximum allowed value for requiredStackDepth.

	getDefaultStackCheck() constant returns (uint16)

The default value for the requiredStackDepth of a scheduled call.

	getDefaultGracePeriod() constant returns (uint8)

The default value for the gracePeriod of a scheduled call.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Call Contract API

Properties of a Call Contract

A call contract for a scheduled call has the following publicly accessible
values.

	address contractAddress: the address of the contract the function should be called on.

	address schedulerAddress: the address who scheduled the call.

	uint targetBlock: the block that the function should be called on.

	uint8 gracePeriod: the number of blocks after the targetBlock during
which it is stll ok to execute the call.

	uint anchorGasPrice: the gas price that was used when the call was
scheduled.

	uint requiredGas: the amount of gas that must be sent with the executing transaction.

	uint basePayment: the amount in wei that will be paid to the address that
executes the function call.

	uint baseFee: the amount in wei that will be paid the creator of the
Alarm service.

	bytes4 abiSignature: the 4 byte ABI function signature of the function on the
contractAddress for this call.

	bytes callData: the data that will be passed to the called function.

	bytes callValue: the value in wei that will be sent with this call

	uint16 requiredStackDepth: the depth by which the stack must be
increasable at the time of execution.

	bool wasCalled: whether the call was called.

	bool wasSuccessful: whether the call was successful during execution.

	bool isCancelled: whether the call was cancelled.

	address claimer: the address that has claimed this contract.

	uint claimAmount: the amount that the claimer agreed to execute the contract for.

	uint claimerDeposit: the amount that the claimer has put up for deposit.

Contract Address

address contractAddress

The address of the contract that the scheduled function call should be executed
on. Retrieved with the contractAddress function.

	Solidity Function Signature: contractAddress() returns (address)

Scheduler Address

address schedulerAddress

The address that the scheduled function call. Retrieved with the
schedulerAddress function.

	Solidity Function Signature: schedulerAddress() returns (address)

Target Block

uint targetBlock

The block number that this call should be executed on. Retrieved with the
targetBlock function.

	Solidity Function Signature: targetBlock() returns (uint)

Grace Period

uint8 gracePeriod

The number of blocks after the targetBlock that it is still ok to execute
this call. Retrieved with the gracePeriod function.

	Solidity Function Signature: gracePeriod() returns (uint8)

Anchor Gas Price

uint anchorGasPrice

The value of tx.gasprice that was used to schedule this function call.
Retrieved with the anchorGasPrice function.

	Solidity Function Signature: anchorGasPrice() returns (uint)

Required Gas

uint requiredGas

The amount of gas that must be sent with the executing transaction. Retrieved
with the requiredGas function.

	Solidity Function Signature: requiredGas() returns (uint)

Base Payment

uint basePayment

The base amount, in wei that the call executor’s payment will be calculated
from. Retrieved with the basePayment function.

	Solidity Function Signature: basePayment() returns (uint)

Base Fee

uint baseFee

The base amount, in wei that the fee to the creator of the alarm service will
be calculate from. Retrieved with the baseFee function.

	Solidity Function Signature: baseFee() returns (uint)

ABI Signature

bytes4 abiSignature

The ABI function signature that should be used to execute this function call.
Retrieved with the abiSignature function.

	Solidity Function Signature: abiSignature() returns (uint)

Call Data

bytes callData

The full call data that will be used for this function call. Retrieved
with the callData function.

	Solidity Function Signature: callData() returns (bytes)

Call Value

uint callValue

The amount in wei that will be sent with the function call. Retrieved with the
callValue function.

	Solidity Function Signature: callValue() returns (bytes)

Was Called

bool wasCalled

Boolean as to whether this call has been executed. Retrieved
with the wasCalled function.

	Solidity Function Signature: wasCalled() returns (bool)

Was Successful

bool wasSuccessful

Boolean as to whether this call was successful. This indicates whether the
called contract returned without error. Retrieved with the wasSuccessful
function.

	Solidity Function Signature: wasSuccessful() returns (bool)

Is Cancelled

bool isCancelled

Boolean as to whether this call has been cancelled. Retrieved with the
isCancelled function.

	Solidity Function Signature: isCancelled() returns (bool)

Claimer

address claimer

Address of the account that has claimed this call for execution. Retrieved
with the claimer function.

	Solidity Function Signature: claimer() returns (address)

Claim Amount

uint claimAmount

Ammount that the claimer has agreed to pay for the call. Retrieved with the
with the claimAmount function.

	Solidity Function Signature: claimAmount() returns (uint)

Claim Deposit

uint claimerDeposit

Ammount that the claimer put down as a deposit. Retrieved with the
with the claimerDeposit function.

	Solidity Function Signature: claimerDeposit() returns (uint)

Functions of a Call Contract

Cancel

Cancels the scheduled call, suiciding the call contract and sending any funds
to the scheduler’s address. This function cannot be called from 265 blocks
prior to the target block for the call through the end of the grace period.

Before the call, only the scheduler may cancel the call. Afterwards, anyone
may cancel it.

	Solidity Function Signature: cancel() public

Execute

Triggers the execution of the call. This can only be done during the window
between the targetBlock through the end of the gracePeriod. If the
call has been claimed, then only the claiming address can execute the call
during the first 16 blocks. If the claming address does not execute the call
during this time, anyone who subsequently executes the call will receive their
deposit.

	Solidity Function Signature: execute() public

Claim Helpers

	function firstClaimBlock() constant returns (uint)

The first block during which the call may be claimed.

	function maxClaimBlock() constant returns (uint)

The block during the claim window when the call will be worth the full
basePayment value.

	function lastClaimBlock() constant returns (uint)

The last block during which the call may be claimed.

	function getClaimAmountForBlock() constant returns (uint)

	function getClaimAmountForBlock(uint block_number) constant returns (uint)

Returns the paymend value for a block in the claim window. If called with no
argument it uses the current block.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Call Execution

Call execution is the process through which scheduled calls are executed at
their desired block number. After a call has been scheduled, it can be executed
by account which chooses to initiate the transaction. In exchange for
executing the scheduled call, they are paid a small fee of approximately 1% of
the gas cost used for executing the transaction.

Executing a call

Use the execute function to execute a scheduled call. This function is
present on the call contract itself (as opposed to the scheduling service).

	Solidity Function Signature: execute() public

When this function is called, the following things happen.

	A few checks are done to be sure that all of the necessary pre-conditions
pass. If any fail, the function exits early without executing the scheduled
call:
	the call has not already been called.

	the call has not been cancelled.

	the transaction has at least requiredGas in gas.

	the stack depth can be extended sufficiently deep for
requiredStackDepth

	the current block number is within the range this call is allowed to be
executed.

	the caller is allowed to execute the function (see claiming)

	The call is executed

	The gas cost and fees are computed and paid.

	The call contract sends any remaining funds to the scheduling
address.

Payment

Each scheduled call sets its own payment value. This can be looked up with the
basePayment accessor function.

The final payment value for executing the scheduled call is the basePayment
multiplied by a scalar value based on the difference between the gas price of
the executing transaction and the gas price that was used to schedule the
transaction. The formula for this scalar is such that the lower the gas price
of the executing transaction, the higher the payment.

Setting transaction gas and gas price

Each call contract has a requiredGas property. Execution of a call
requires at least this amount of gas be sent with the transaction.

This gas value should be used in conjuction with the basePayment
and baseFee amounts with respect to the ether balance of the call contract.
The provided gas for the transaction should not exceed (balance - 2 *
(basePayment + baseFee)) / gasPrice if you want to guarantee that you will be
fully reimbursed for gas expenditures.

Getting your payment

Payment for executing a call is sent to you as part of the executing
transaction, as well as being logged by the CallExecuted event.

Determining what scheduled calls are next

You can query the Alarm service for the call key of the next scheduled call on
or after a specified block number using the getNextCall function

	Solidity Function Signature: getNextCall(uint blockNumber) returns (address)

Since there may be multiple calls on the same block, it is best to also check
if the call has any siblings using the getNextCallSibling function. This
function takes a call contract address and returns the address that is
scheduled to come next.

When checking for additional calls in this manner, you should check the target
block of each subsequent call to be sure it is within a range that you care
about.

	Solidity Function Signature: getNextCallSibling(address callAddress) returns (address)

Note

10 blocks into the future is a good range to monitor since new calls must
always be scheduled at least 10 blocks in the future.

The Freeze Window

The 10 blocks prior to a call’s target block are called the freeze window. During this window, nothing about a call can change. This means that it cannot be cancelled or claimed.

Claiming a call

Claiming a call is the process through which you as a call executor can
guarantee the exclusive right to execute the call during the first 16 blocks of
the call window for the scheduled call. As part of the claim, you will need to
put down a deposit, which is returned to you if you when you execute the call.
Failing to execute the call will forfeit your deposit.

Claim Amount

A call can be claimed during the 255 blocks prior to the freeze window. This
period is referred to as the claim window. The amount that you are agreeing to
be paid for the call is based on whichever block the call is claimed on. The
amount can be calculated using the following formula.

	Let i be the index of the block within the 255 block claim window.

	Let basePayment be the payment amount specified by the call contract.

	If within the first 240 blocks of the window: payment = basePayment * i / 240

	If within the last 15 blocks of the window: payment = basePayment

This formula results in a linear growth from 0 to the full basePayment
amount over the course of the first 240 blocks in the claim window. The last
15 blocks are all set at the full basePayment amount.

A claim must be accompainied by a deposit that is at least twice the call’s
basePayment amount.

Getting your Deposit Back

If you claim a call and do not execute it within the first 16 blocks of the
call window, then you will risk losing your deposit. Once the first 16 blocks
have passed, the call can be executed by anyone. At this point, the first
person to execute the call will receive the deposit as part of their payment
(and incentive to pick up claimed calls that have not been called).

Claim API

To claim a contract

	Solidity Function Signature: claim()

To check what the claimAmount will be for a given block number use the
getClaimAmountForBlock function. This will return an amount in wei that
represents the base payment value for the call if claimed on that block.

	Solidity Function Signature: getClaimAmountForBlock(uint blockNumber)

This function also has a shortcut that uses the current block number

	Solidity Function Signature: getClaimAmountForBlock()

You can check if a call has already been claimed with the claimer function.
This function will return either the empty address 0x0 if the call has not
been claimed, or the address of the claimer if it has.

	Solidity Function Signature: claimer() returns (address)

Safeguards

There are a limited set of safeguards that Alarm protects those executing calls
from.

	Ensures that the call cannot cause the executing transaction to fail due to
running out of gas (like an infinite loop).

	Ensures that the funds to be used for payment are locked during the call
execution.

Tips for executing scheduled calls

The following tips may be useful if you wish to execute calls.

Look in the next 265 blocks

Calls within this window are likely claimable.

Calls are frozen during the 10 blocks prior to the target block

Once a call enters the freeze window it is immutable until call execution.

No cancellation in next 265 blocks

Since calls cannot be cancelled less than 265 blocks in the future, you don’t
need to check cancellation status during the 265 blocks prior to its target
block.

Check that it was not already called

If you are executing a call after the target block but before the grace period
has run out, it is good to check that it has not already been called.

Compute how much gas to provide

If you want to guarantee that you will be 100% reimbursed for your gas
expenditures, then you need to compute how much gas the contract can pay for.
The overhead involved in execution is approximately 140,000 gas. The
following formula should be a close approximation to how much gas a contract
can afford.

	let gasPrice be the gas price for the executing transaction.

	let balance be the ether balance of the contract.

	let claimerDeposit be the claimer’s deposit amount.

	let basePayment be the base payment amount for the contract. This may
either be the value specified by the scheduler, or the claimAmount if the
contract has been claimed.

	gas = (balance - 2 * basePayment - claimerDeposit) / gasPrice

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Reliability

One of the ways to assess the reliability of the Alarm service is to check the
Reliability Canary. This is a contract which continually reschedules a call to
itself every 480 blocks (approximately 2 hours). If any of these function
calls is ever missed the canary dies.

http://canary.ethereum-alarm-clock.com/

A dead canary means that at some point one of the calls that the canary
scheduled was not executed.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Execution Client

Warning

This tool should be considered alpha software and comes with all of the caveats and disclaimers that one might expect with early stage software. Use at your own risk.

The easiest way to start executing calls is to use the Ethereum Alarm Clock Client [https://github.com/pipermerriam/ethereum-alarm-client].

Installation can be done with pip [https://pip.pypa.io/en/stable/]

$ pip install ethereum-alarm-clock-client

Once the package is installed, a new command line tool eth_alarm should be
available.

Running the Scheduler

The execution scheduler is a process that monitors the alarm service for
upcoming scheduled function calls and executes them at their target block.

The scheduler requires an unlocked ethereum client with the JSON-RPC server
enabled to be running on localhost.

$ eth_alarm scheduler
BLOCKSAGE: INFO: 2015-12-23 15:31:26,920 > Starting block sage
BLOCKSAGE: INFO: 2015-12-23 15:31:38,143 > Heartbeat: block #328 : block_time: 1.90237202068
BLOCKSAGE: INFO: 2015-12-23 15:31:43,623 > Heartbeat: block #335 : block_time: 1.75782920308
SCHEDULER: INFO: 2015-12-23 15:31:56,415 Tracking call: 0xa4a1b0d99e5271dd236a7f2abe30f81bba67dd90
CALL-0XA4A1B0D99E5271DD236A7F2ABE30F81BBA67DD90: INFO: 2015-12-23 15:31:56,415 Sleeping until 377
BLOCKSAGE: INFO: 2015-12-23 15:31:58,326 > Heartbeat: block #340 : block_time: 1.89721174014
BLOCKSAGE: INFO: 2015-12-23 15:32:06,473 > Heartbeat: block #346 : block_time: 2.07706735856
BLOCKSAGE: INFO: 2015-12-23 15:32:12,427 > Heartbeat: block #352 : block_time: 1.78518210439
BLOCKSAGE: INFO: 2015-12-23 15:32:24,904 > Heartbeat: block #357 : block_time: 1.67715797869
BLOCKSAGE: INFO: 2015-12-23 15:32:32,134 > Heartbeat: block #363 : block_time: 2.02664816647
BLOCKSAGE: INFO: 2015-12-23 15:32:41,400 > Heartbeat: block #368 : block_time: 1.70622547582
BLOCKSAGE: INFO: 2015-12-23 15:32:48,291 > Heartbeat: block #373 : block_time: 1.59583837187
BLOCKSAGE: INFO: 2015-12-23 15:32:53,134 > Heartbeat: block #378 : block_time: 1.51536617309
CALL-0XA4A1B0D99E5271DD236A7F2ABE30F81BBA67DD90: INFO: 2015-12-23 15:32:55,419 Entering call loop
CALL-0XA4A1B0D99E5271DD236A7F2ABE30F81BBA67DD90: INFO: 2015-12-23 15:32:55,452 Attempting to execute call
CALL-0XA4A1B0D99E5271DD236A7F2ABE30F81BBA67DD90: INFO: 2015-12-23 15:32:59,473 Transaction accepted.

	The process will log a heartbeat every 4 blocks (1 minute).

	When an upcoming call is found that is unclaimed, the scheduler will claim
the call. (more on this later)

	When an upcoming scheduled call is found within the next 40 blocks it will
print a notice that it is now tracking that call.

	When the target block is imminent (2 blocks) a notice that it is entering the
call loop is logged.

Call Claiming

The scheduling client will claim scheduled calls. The logic for claiming is
roughly the following.

	Let N be a number between 0 and 255 that represents the current location in
the call’s claim window.

	If the claim value at N is not at least enough to pay for the claiming
transaction and N is less than 240 the call is ignored.

	If the call is profitable at N or N is greater than 240, a random
number x is generated between 0 and 255.

	If x is less than N then the client will attempt to claim the call.
Otherwise the call is ignored.

Call Execution

Once the call enters the call window the client will check whether the call is claimed.

	If the call is claimed and the current coinbase is the claiming address then the client will attempt to execute the call.

	If the call is claimed and the claiming address is not the current coinbase
the client will wait until the call enters free-for-all mode.

	If the call is unclaimed then the client will attempt to execute it.

Once the client has sent a transaction attempting to execute the call it will
wait for the transaction receipt and no further attempts to execute the call
will be made.

Checks

The client implements all of the following

	Don’t claim cancelled calls

	Don’t execute cancelled calls

	Don’t execute calls that have already been executed.

	Don’t execute calls that don’t have enough ether to pay for the transaction.

Other Things You Should Know

	The script only logs that the transaction was accepted which is not the same
as successfully executing the call. see issue 1 [https://github.com/pipermerriam/ethereum-alarm-client/issues/1]

Running a server

The scheduler runs nicely on the smallest AWS EC2 instance size. The following
steps should get an EC2 instance provisioned with the scheduler running.

1. Setup an EC2 Instance

	Setup an EC2 instance running Ubuntu. The smallest instance size works fine.

	Add an extra volume to store your blockchain data. 16GB should be sufficient
for the near term future.

	Optionally mark this volume to persist past termination of the instance so
that you can reuse your blockchain data.

	Make sure that the security policy leaves 30303 open to connections from
the outside world.

2. Provision the Server

	sudo apt-get update --fix-missing

	sudo apt-get install -y supervisor

	sudo apt-get install -y python-dev python build-essential libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev python-virtualenv

3. Mount the extra volume

The following comes from the AWS Documentation [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-using-volumes.html] and will only work verbatim
if your additional volume is /dev/xvdb.

	sudo mkfs -t ext4 /dev/xvdb

	sudo mkdir -p /data

	sudo mount /dev/xvdb /data

	sudo mkdir -p /data/ethereum

	sudo chown ubuntu /data/ethereum

Modify /etc/fstab to look like the following. This ensures the extra volume
will persist through restarts.

#/etc/fstab
LABEL=cloudimg-rootfs / ext4 defaults,discard 0 0
/dev/xvdb /data ext4 defaults,nofail 0 2

Run sudo mount -a If you don’t get any errors then you haven’t borked your
etc/fstab

4. Install Geth

Install the go-ethereum client.

	sudo apt-get install -y software-properties-common

	sudo add-apt-repository -y ppa:ethereum/ethereum

	sudo apt-get update

	sudo apt-get install -y ethereum

5. Install the Alarm Client

Install the Alarm client.

	mkdir -p ~/alarm-0.6.0

	cd ~/alarm-0.6.0

	virtualenv env && source env/bin/activate

	pip install ethereum-alarm-clock-client

6. Configure Supervisord

Supervisord will be used to manage both geth and eth_alarm.

Put the following in /etc/supervisord/conf.d/geth.conf

[program:geth]
command=geth --datadir /data/ethereum --unlock 0 --password /home/ubuntu/geth_password --rpc --fast
user=ubuntu
stdout_logfile=/var/log/supervisor/geth-stdout.log
stderr_logfile=/var/log/supervisor/geth-stderr.log

Put the following in /etc/supervisord/conf.d/scheduler-v6.conf

[program:scheduler-v6]
user=ubuntu
command=/home/ubuntu/alarm-0.6.0/env/bin/eth_alarm scheduler --client rpc --address 0xe109ecb193841af9da3110c80fdd365d1c23be2a
directory=/home/ubuntu/alarm-0.6.0/
environment=PATH="/home/ubuntu/alarm-0.6.0/env/bin"
stdout_logfile=/var/log/supervisor/scheduler-v6-stdout.log
stderr_logfile=/var/log/supervisor/scheduler-v6-stderr.log
autorestart=true
autostart=false

7. Generate geth account

Use the following command to generate an account. The --datadir argument
is important, otherwise the generated account won’t be found by our geth
process being run by supervisord.

	$ geth --datadir /data/ethereum account new

Place the password for that account in /home/ubuntu/geth_password.

You will also need to send this account a few ether. Twice the maximum
transaction cost should be sufficient.

8. Turn it on

Reload supervisord so that it finds the two new config files.

	sudo supervisord reload

You’ll want to wait for geth to fully sync with the network before you
start the scheduler-v6 process.

9. Monitoring

You can monitor these two processes with tail

	tail -f /var/log/supervisor/geth*.log

	tail -f /var/log/supervisor/scheduler-v6*.log

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Costs

The Alarm service operates under a scheduler pays model, which means that
the scheduler of a call is responsible for paying up front for all costs
associated with execution. These funds are held within the call contract until
execution or cancellation.

Call Payment and Donation

When a call is scheduled, the scheduler can either provide values for the
payment and donation, or leave them off in favor of using the default values.

The account which executes the scheduled call is reimbursed 100% of the gas
cost + payment for their service.

The donation is sent to the creator of the Alarm service.

Default Payment Value

The default used for the payment value for each scheduled call is ultimately
decided by the open market.

	If calls are being claimed early in the claim window the value will decrease.

	If calls are being claimed late in the claim window the value will increase

Note

This algorithm is a work in progress. If you have ideas on ways to improve
this feel free to reach out to me.

Gas Costs

	Scheduling a function call takes approximately 1.1 million gas.

	Execution adds approximately 100,000 gas of overhead.

The Gas Price Scalar multiplier

Both the payment and the donation are multiplied by the GasPriceScalar.

GasPriceScalar is a multiplier that ranges from 0 - 2 which is based on
the difference between the gas priced used for call execution and the gas
price used during call scheduling. This number incentivises the call
executor to use as low a gas price as possible.

This multiplier is computed with the following formula.

	IF gasPrice > anchorGasPrice

anchorGasPrice / gasPrice

	IF gasPrice <= anchorGasPrice

anchorGasPrice / (2 * anchorGasPrice - gasPrice)

Where:

	anchorGasPrice is the tx.gasprice used when the call was scheduled.

	gasPrice is the tx.gasprice used to execute the call.

At the time of call execution, the anchorGasPrice has already been set, so
the only value that is variable is the gasPrice which is set by the account
executing the transaction. Since the scheduler is the one who ends up paying
for the actual gas cost, this multiplier is designed to incentivize the caller
using the lowest gas price that can be expected to be reliably picked up and
promptly executed by miners.

Here are the values this formula produces for a baseGasPrice of 20 and a
gasPrice ranging from 10 - 40;

	gasPrice
	multiplier

	15
	1.20

	16
	1.17

	17
	1.13

	18
	1.09

	19
	1.05

	20
	1.00

	21
	0.95

	22
	0.91

	23
	0.87

	24
	0.83

	25
	0.80

	26
	0.77

	27
	0.74

	28
	0.71

	29
	0.69

	30
	0.67

	31
	0.65

	32
	0.63

	33
	0.61

	34
	0.59

	35
	0.57

	36
	0.56

	37
	0.54

	38
	0.53

	39
	0.51

	40
	0.50

You can see from this table that as the gasPrice for the executing
transaction increases, the total payout for executing the call decreases. This
provides a strong incentive for the entity executing the transaction to use a
reasonably low value.

Alternatively, if the gasPrice is set too low (potentially attempting to
maximize payout) and the call is not picked up by miners in a reasonable amount
of time, then the entity executing the call will not get paid at all. This
provides a strong incentive to provide a value high enough to ensure the
transaction will be executed.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Contract ABI

Beyond the simplest use cases, the use of address.call to interact with the
Alarm service is limiting. Beyond the readability issues, it is not possible
to get the return values from function calls when using call().

By using an abstract solidity contract which defines all of the function
signatures, you can easily call any of the Alarm service’s functions, letting
the compiler handle computation of the function ABI signatures.

Abstract Solidity Contracts

The following abstract contracts can be used alongside your contract code to
interact with the Alarm service.

Abstract Scheduler Contract Source Code

The following abstract solidity contract can be used to interact with the
scheduling contract from a solidity contract.

contract SchedulerAPI {
 /*
 * Call Scheduling API
 */
 function getMinimumGracePeriod() constant returns (uint);
 function getDefaultDonation() constant returns (uint);
 function getMinimumCallGas() constant returns (uint);
 function getMaximumCallGas() constant returns (uint);
 function getMinimumEndowment() constant returns (uint);
 function getMinimumEndowment(uint basePayment) constant returns (uint);
 function getMinimumEndowment(uint basePayment, uint baseDonation) constant returns (uint);
 function getMinimumEndowment(uint basePayment, uint baseDonation, uint callValue) constant returns (uint);
 function getMinimumEndowment(uint basePayment, uint baseDonation, uint callValue, uint requiredGas) constant returns (uint);
 function isKnownCall(address callAddress) constant returns (bool);
 function getFirstSchedulableBlock() constant returns (uint);
 function getMinimumStackCheck() constant returns (uint16);
 function getMaximumStackCheck() constant returns (uint16);
 function getDefaultStackCheck() constant returns (uint16);
 function getDefaultRequiredGas() constant returns (uint);
 function getDefaultGracePeriod() constant returns (uint8);

 /*
 * Next Call API
 */
 function getCallWindowSize() constant returns (uint);
 function getNextCall(uint blockNumber) constant returns (bytes32);
 function getNextCallSibling(address callAddress) constant returns (bytes32);
}

Abstract Call Contract Source Code

The following abstract solidity contract can be used to interact with a call
contract from a solidity contract.

contract CallContractAPI {
 bytes public callData;
 address public contractAddress;
 uint8 public gracePeriod;
 address public schedulerAddress;
 uint public requiredGas;
 bool public isCancelled;
 bool public wasCalled;
 bool public wasSuccessful;
 uint public anchorGasPrice;
 uint public basePayment;
 bytes4 public abiSignature;
 uint public baseFee;
 uint public targetBlock;
 uint16 public requiredStackDepth;

 function execute() public;
 function cancel() public;

 function claim() public;

 address public claimer;
 uint public claimerDeposit;
 uint public claimAmount;

 function checkExecutionAuthorization(address executor, uint256 block_number) public returns (bool)

 function getClaimAmountForBlock() public returns (uint);
 function getClaimAmountForBlock(uint256 block_number) public returns (uint);

 function registerData() public;
}

Only use what you need

The contracts above have stub functions for every API exposed by Alarm and
CallerPool. It is safe to remove any functions or events from the abstract
contracts that you do not intend to use.

Contract ABI

If you would like to interact with these contracts either from the javascript
console, or the Ethereum wallet, you can use the following contract ABI.

Scheduler ABI

[
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "callValue",
 "type": "uint256"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 },
 {
 "name": "basePayment",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "requiredStackDepth",
 "type": "uint16"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 },
 {
 "name": "args",
 "type": "uint256[5]"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "targetBlock",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getDefaultStackCheck",
 "outputs": [
 {
 "name": "",
 "type": "uint16"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getMinimumEndowment",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getMaximumCallGas",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "callAPIVersion",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callValue",
 "type": "uint256"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "callValue",
 "type": "uint256"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "callAddress",
 "type": "address"
 }
],
 "name": "getNextCallSibling",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 },
 {
 "name": "basePayment",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "callAddress",
 "type": "address"
 }
],
 "name": "isKnownCall",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getMaximumStackCheck",
 "outputs": [
 {
 "name": "",
 "type": "uint16"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "callValue",
 "type": "uint256"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "callData",
 "type": "bytes"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 },
 {
 "name": "basePayment",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callValue",
 "type": "uint256"
 },
 {
 "name": "callData",
 "type": "bytes"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 },
 {
 "name": "args",
 "type": "uint256[4]"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "basePayment",
 "type": "uint256"
 },
 {
 "name": "baseDonation",
 "type": "uint256"
 },
 {
 "name": "callValue",
 "type": "uint256"
 }
],
 "name": "getMinimumEndowment",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "defaultPayment",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getDefaultGracePeriod",
 "outputs": [
 {
 "name": "",
 "type": "uint8"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "requiredStackDepth",
 "type": "uint16"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 },
 {
 "name": "callValue",
 "type": "uint256"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "basePayment",
 "type": "uint256"
 },
 {
 "name": "baseDonation",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getMinimumStackCheck",
 "outputs": [
 {
 "name": "",
 "type": "uint16"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getMinimumCallGas",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getCallWindowSize",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "blockNumber",
 "type": "uint256"
 }
],
 "name": "getNextCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "callValue",
 "type": "uint256"
 },
 {
 "name": "contractAddress",
 "type": "address"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "basePayment",
 "type": "uint256"
 }
],
 "name": "getMinimumEndowment",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getFirstSchedulableBlock",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 },
 {
 "name": "basePayment",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getDefaultDonation",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getMinimumGracePeriod",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "callValue",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getDefaultRequiredGas",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 },
 {
 "name": "basePayment",
 "type": "uint256"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [],
 "name": "updateDefaultPayment",
 "outputs": [],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "basePayment",
 "type": "uint256"
 },
 {
 "name": "baseDonation",
 "type": "uint256"
 },
 {
 "name": "callValue",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 }
],
 "name": "getMinimumEndowment",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "contractAddress",
 "type": "address"
 },
 {
 "name": "abiSignature",
 "type": "bytes4"
 },
 {
 "name": "callData",
 "type": "bytes"
 },
 {
 "name": "targetBlock",
 "type": "uint256"
 },
 {
 "name": "requiredGas",
 "type": "uint256"
 },
 {
 "name": "gracePeriod",
 "type": "uint8"
 }
],
 "name": "scheduleCall",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "basePayment",
 "type": "uint256"
 },
 {
 "name": "baseDonation",
 "type": "uint256"
 }
],
 "name": "getMinimumEndowment",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "inputs": [],
 "type": "constructor"
 }
]

Call Contract ABI

[
 {
 "constant": true,
 "inputs": [],
 "name": "wasSuccessful",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "targetBlock",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "firstClaimBlock",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getExtraGas",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "n",
 "type": "uint256"
 }
],
 "name": "__dig",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "executor",
 "type": "address"
 },
 {
 "name": "block_number",
 "type": "uint256"
 }
],
 "name": "checkExecutionAuthorization",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "requiredStackDepth",
 "outputs": [
 {
 "name": "",
 "type": "uint16"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "callAPIVersion",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "claimerDeposit",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "anchorGasPrice",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "isCancellable",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "callData",
 "outputs": [
 {
 "name": "",
 "type": "bytes"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [],
 "name": "claim",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getClaimAmountForBlock",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [],
 "name": "execute",
 "outputs": [],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "baseDonation",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getOverhead",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "executor",
 "type": "address"
 },
 {
 "name": "startGas",
 "type": "uint256"
 }
],
 "name": "beforeExecute",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "claimAmount",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "origin",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "isCancelled",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "requiredGas",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "gracePeriod",
 "outputs": [
 {
 "name": "",
 "type": "uint8"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "lastClaimBlock",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "schedulerAddress",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [],
 "name": "registerData",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "state",
 "outputs": [
 {
 "name": "",
 "type": "uint8"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "basePayment",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "wasCalled",
 "outputs": [
 {
 "name": "",
 "type": "bool"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "abiSignature",
 "outputs": [
 {
 "name": "",
 "type": "bytes4"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "maxClaimBlock",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "claimer",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "callValue",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [],
 "name": "cancel",
 "outputs": [],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [
 {
 "name": "block_number",
 "type": "uint256"
 }
],
 "name": "getClaimAmountForBlock",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "contractAddress",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "type": "function"
 },
 {
 "inputs": [
 {
 "name": "_schedulerAddress",
 "type": "address"
 },
 {
 "name": "_targetBlock",
 "type": "uint256"
 },
 {
 "name": "_gracePeriod",
 "type": "uint8"
 },
 {
 "name": "_contractAddress",
 "type": "address"
 },
 {
 "name": "_abiSignature",
 "type": "bytes4"
 },
 {
 "name": "_callData",
 "type": "bytes"
 },
 {
 "name": "_callValue",
 "type": "uint256"
 },
 {
 "name": "_requiredGas",
 "type": "uint256"
 },
 {
 "name": "_requiredStackDepth",
 "type": "uint16"
 },
 {
 "name": "_basePayment",
 "type": "uint256"
 },
 {
 "name": "_baseDonation",
 "type": "uint256"
 }
],
 "type": "constructor"
 }
]

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Events

The following events are used to log notable events within the Alarm service.

Scheduler Events

The Scheduler contract logs the following events.

Call Scheduled

	Solidity Event Signature: CallScheduled(address callAddress)

Logged when a new scheduled call is created.

Call Rejected

	Solidity Event Signature: CallRejected(address indexed schedulerAddress, bytes32 reason)

Logged when an attempt to schedule a function call fails.

Call Contract Events

Each CallContract logs the following events.

Call Executed

	
	Solidity Event Signature: CallExecuted(address indexed executor, uint gasCost, uint payment, uint fee, bool success)

	;

Executed when the call is executed.

Call Aborted

	Solidity Event Signature: _CallAborted(address executor, bytes32 reason)

Executed when an attempt is made to execute a scheduled call is rejected. The
reason value in this log entry contains a short string representation of
why the call was rejected. (Note that this event name starts with an underscore)

Reasons:

	NOT_ENOUGH_GAS - Executing transaction less than the requiredGas
value

	ALREADY_CALLED - The call has already been executed.

	NOT_IN_CALL_WINDOW - The transaction is occurring outside of the call
window.

	NOT_AUTHORIZED - Attempting to execute a claimed call during the
period that the claimer has exclusive call rights. * STACK_TOO_DEEP

	The stack depth could not be extended to requiredStackDepth.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Terminology

Definitions for various terms that are used regularly to describe parts of the
Alarm service.

General

	Ethereum Alarm Clock
Alarm
Alarm Service

	Generic terms for the service as a whole.

	Scheduler Contract

	The solidity contract responsible for scheduling a function call.

	Call Contract

	The solidity contract that is deployed for each scheduled call. This
contract handles execution of the call, registration of call data, gas
reimbursment, and payment and fee dispursment.

	Scheduled Call

	A contract function call that has been registered with the Alarm
service to be executed at a specified time in the future (currently
denoted by a block number).

Calls and Call Scheduling

	Scheduler

	The account which scheduled the function call.

	Executor

	The account which initiates the transaction which executes a scheduled
function call.

	Target Block

	The first block number that a scheduled call can be called.

	Grace Period

	The number of blocks after the target block that a scheduled call
can be be called.

	Freeze Window

	The 10 blocks directly preceeding the target block for a call

	Claim Window

	The 255 block window prior to the Freeze Window during which the call
may be claimed for exclusive rights to execution during the first 16
blocks of the call window.

	First Claim Block

	The first block in the 255 block claim window.

	Max Claim Block

	The 240th block of the claim window. This is the block when the value
of the call if claimed is equal to the basePayment for thec all.

	Call Window

	Used to refer to either the full window of blocks during which a
scheduled call can be executed, or a portion of this window that has
been designated to a specific caller.

	Payment

	The amount that is paid to the executor of the scheduled call.

	Donation

	The amount that is paid to the creator of the Alarm service.

	Anchor Gas Price

	The gas price that was used when scheduling the scheduled call.

	Gas Price Scalar

	A number ranging from 0 - 2 that is derived from the difference between
the gas price of the executing transaction and the anchor gas
grice. This number equals 1 when the two numbers are equal. It
approaches 2 as the executing gas grice drops below the anchor gas
price. It approaches zero as the executing gas price rises above the
anchor gas price. This multiplier is applied to the payment and fee
values, intending to motivate the executor to use a reasonable gas
price.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Ethereum Alarm Clock 1.0.0 documentation

Changelog

0.6.0

	Scheduled calls can now specify a required gas amount. This takes place of
the suggestedGas api from 0.6.0

	Scheduled calls can now send value along with the transaction.

	Calls now protect against stack depth attacks. This is configurable via the
requiredStackDepth option.

	Calls can now be scheduled as soon as 10 blocks in the future.

	Experimental implementation of market-based value for the defaultPayment

	scheduleCall now has 31 different call signatures.

0.6.0

	Each scheduled call now exists as it’s own contract, referred to as a call
contract.

	Removal of the Caller Pool

	Introduction of the claim api for call.

	Call Portability. Scheduled calls can now be trustlessly imported into
future versions of the service.

0.5.0

	Each scheduled call now exists as it’s own contract, referred to as a call
contract.

	The authorization API has been removed. It is now possible for the contract
being called to look up msg.sender on the scheduling contract and find
out who scheduled the call.

	The account management API has been removed. Each call contract now manages
it’s own gas money, the remainder of which is given back to the scheduler
after the call is executed.

	All of the information that used to be stored about the call execution is now
placed in event logs (gasUsed, wasSuccessful, wasCalled, etc)

0.4.0

	Convert Alarm service to use library contracts for all functionality.

	CallerPool contract API is now integrated into the Alarm API

0.3.0

	Convert Alarm service to use Grove [https://github.com/pipermerriam/ethereum-grove] for tracking scheduled call ordering.

	Enable logging most notable Alarm service events.

	Two additional convenience functions for invoking scheduleCall with
gracePeriod and nonce as optional parameters.

0.2.0

	Fix for Issue 42 [https://github.com/pipermerriam/ethereum-alarm-clock/issues/42]. Make the free-for-all bond bonus restrict itself to the
correct set of callers.

	Re-enable the right tree rotation in favor of removing three getLastX
function. This is related to the pi-million gas limit which is restricting
the code size of the contract.

0.1.0

	Initial release.

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Ethereum Alarm Clock 1.0.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | M
 | P
 | S
 | T

A

 	

 	Alarm

 	Alarm Service

 	

 	Anchor Gas Price

C

 	

 	Call Contract

 	Call Window

 	

 	Claim Window

D

 	

 	Donation

E

 	

 	Ethereum Alarm Clock

 	

 	Executor

F

 	

 	First Claim Block

 	

 	Freeze Window

G

 	

 	Gas Price Scalar

 	

 	Grace Period

M

 	

 	Max Claim Block

P

 	

 	Payment

S

 	

 	Scheduled Call

 	Scheduler

 	

 	Scheduler Contract

T

 	

 	Target Block

 Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		Ethereum Alarm Clock 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Piper Merriam.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

