

Welcome to Ethereum Alarm Clock’s documentation!

The Ethereum Alarm Clock is a service that allows scheduling transactions to be
executed at a later time on the ethereum blockchain. This is accomplished by
specifying all of the details for the transaction you wish to send, as well as
providing up-front payment for gas costs, allowing your transaction to be
executed for you at a later time.

The service is completely trustless, meaning that the entire service operates
as smart contracts on the Ethereum blockchain, with no priviledged access given
to any party.

The code for this service is open source under the MIT license and can be
viewed on the github repository [https://github.com/pipermerriam/ethereum-alarm-clock]. Each release of the alarm service includes
details on verifying the contract source code.

For a more complete explanation of what this service does check out the
Introduction.

If you are a smart contract developer and would like to start scheduling
transactions now then check out the Quickstart.

If you are looking to build a lower level integration with the service then our
./TODO is a good place to start.

Contents:

	Introduction
	What problem does this solve

	How transactions are executed

	Execution guarantees

	How scheduling transactions works

	Quickstart
	Scheduling your first transaction

	Architecture
	Overview

	RequestTracker

	RequestFactory

	BlockScheduler and TimestampScheduler

	Transaction Request
	Interface

	Events

	Data Model
	Retrieving Data

	Transaction Data

	Payment Data

	Claim Data

	Schedule Data

	Meta Data

	Actions
	Cancellation

	Claiming

	Execution

	Retrieval of Ether
	Returning the Claim Deposit

	Retrieving the Payment

	Retrieving the Donation

	Return any extra Ether

	Claiming
	The Problem

	The Solution

	Claim Deposit

	How claiming effects payment

	Gas Costs

	Execution
	Important Windows of Blocks/Time
	Freeze Window

	The Execution Window

	Reserved Execution Window

	The Execution Lifecycle
	Part 1: Validation
	Check #1: Not already called

	Check #2: Not Cancelled

	Check #3: Not before execution window

	Check #4: Not after execution window

	Check #5 and #6: Within the execution window and authorized

	Check #7: Stack Depth Check

	Check #8: Sufficient Call Gas

	Part 2: Execution

	Part 3: Accounting

	Gas Multiplier

	Sending the Execution Transaction
	Gas Reimbursement

	Minimum ExecutionGas

	Request Factory
	Introduction

	Interface

	Events

	Function Arguments

	Validation
	Check #1: Insufficient Endowment

	Check #2: Invalid Reserved Window

	Check #3: Invalid Temporal Unit

	Check #4: Execution Window Too Soon

	Check #5: Invalid Stack Depth Check

	Check #6: Call Gas too high

	Check #7: Empty To Address

	Creation of Transaction Requests

	Tracking API

	Request Tracker
	Introduction

	Interface

	Database Structure

	Chain of Trust

	API

	Request Factory
	Introduction

	Interface

	Defaults

	API

	Endowments

	CLI Interface
	Requirements

	Installation

	The eth_alarm executable
	Rollbar Integration

	Running a server
	1. Setup an EC2 Instance

	2. Provision the Server

	3. Mount the extra volume

	4. Install Geth or Parity

	5. Install the Alarm Client

	6. Configure Supervisord

	7. Generate an account

	8. Turn it on

	9. Monitoring

	10. System Clock

	Changelog
	0.8.0 (unreleased)

	0.7.0

	0.6.0

	0.5.0

	0.4.0

	0.3.0

	0.2.0

	0.1.0

Introduction

	What problem does this solve

	How transactions are executed

	Execution guarantees

	How scheduling transactions works

What problem does this solve

The simplest way to explain the utility of the Alarm service is to explain the
problem it solves.

First, you need to understand the difference between private key based accounts
and contract accounts. There are two types of accounts on the Ethereum
blockchain.

	Accounts that have a private key.

	Contracts (which do not have a private key)

Private key accounts are the accounts that humans operate, where as contract
accounts are deployed pieces of code capable of executing some computer
program. Contract accounts cannot however trigger their own code execution.

All code execution in the Ethreum Virtual Machine, or EVM must be triggered by
a private key based account. This is done by sending a transaction, which may
do something simple like transfering ether, or it may do something more complex
like calling a function on a contract account.

The second part of the problem is that when you send a transaction it is
executed as soon as it is included in a block. The Ethereum protocol does not
provide any way to create a transaction to be executed at a later time.

This leads us to the problem that the Alarm service solves. With the
functionality provided by this service, transactions can be securely scheduled
to be executed at a later time.

How transactions are executed

When a transaction is scheduled a new smart contract is created that holds all
of the information needed to execute the transaction. It may be useful to
think of this as an order on an exchange. When called during the specified
execution window, this contract will send the transaction as specified and then
pay the account that triggered the execution.

These contracts are referred to as TransactionRequest contracts and
are written to provide strong guarantees of correctness to both parties.

The creator of the TransactionRequest contract can know that their
transaction will only be sent during the window they specified and that the
transaction parameters will be sent exactly as specified.

Similarly, the account that executes the TransactionRequest contract
can know that no matter what occurs during the execution of the transaction
that they will receive full gas reimbursement as well as their payment for
execution.

Execution guarantees

You may have noted at this point that this service relies on external parties
to initiate the execution of these transactions. This means that it is
possible that your transaction will not be executed at all.

In an ideal situation, there is a sufficient volume of scheduled transactions
that operating a server to execute these transactions is a profitable endeavor.
The reality is that I operate between 3-5 execution servers dedicated filling
this role until there is sufficient volume that I am confident I can turn those
servers off or until it is no longer feasible for me to continue paying their
costs.

How scheduling transactions works

A transaction is scheduled by providing some or all of the following
information.

	Details about the transaction itself such as which address the transaction
should be sent to, or how much ether should be sent with the transaction.

	Details about when the transaction can be executed. This includes things
like the window of time or blocks during which this transaction can be
executed.

	Ether to pay for the transaction gas costs as well as the payment that will
be paid to the account that triggers the transaction.

Scheduling is done by calling a Scheduler contract which handles
creation of the individual TransactionRequest contract.

Quickstart

	Scheduling your first transaction

Scheduling your first transaction

The first step is to establish how we will interact with the Alarm service’s
Scheduler contract. Lets create an abstract contract to accomplish
this.

contract SchedulerInterface {
 //
 // params:
 // - uintArgs[0] callGas
 // - uintArgs[1] callValue
 // - uintArgs[2] windowStart
 // - uint8 windowSize
 // - bytes callData
 // - address toAddress
 //
 function scheduleTransaction(address toAddress,
 bytes callData,
 uint8 windowSize,
 uint[3] uintArgs) public returns (address);
}

This abstract contract exposes the function scheduleTransaction which will
return the address of the newly created TransactionRequest contract.

Now lets write a simple contract that can use the scheduling service.

contract DelayedPayment {
 SchedulerInterface constant scheduler = SchedulerInterface(0xTODO);

 uint lockedUntil;
 address recipient;

 function DelayedPayment(address _recipient, uint numBlocks) {
 // set the time that the funds are locked up
 lockedUntil = block.number + numBlocks;
 recipient = _recipient;

 uint[3] memory uintArgs = [
 200000, // the amount of gas that will be sent with the txn.
 0, // the amount of ether (in wei) that will be sent with the txn
 lockedUntil, // the first block number on which the transaction can be executed.
];
 scheduler.scheduleTransaction.value(2 ether)(
 address(this), // The address that the transaction will be sent to.
 "", // The call data that will be sent with the transaction.
 255, // The number of blocks this will be executable.
 uintArgs, // The tree args defined above
)
 }

 function() {
 if (this.balance > 0) {
 payout();
 }
 }

 function payout() public returns (bool) {
 if (now < lockedUntil) return false;

 return recipient.call.value(this.balance)();
 }
}

The contract above is designed to lock away whatever ether it is given for
numBlocks blocks. In its constructor, it makes a call to the
scheduleTransaction method on the scheduler contract. The function
takes a total of 6 parameters, 3 of which are passed in as an array. Lets
briefly go over what each of these parameters are.

	
scheduleTransaction(address toAddress,

	
bytes callData,

	
uint8 windowSize,

	
[uint callGas, uint callValue, uint windowStart])

	

	address toAddress: The address which the transaction will be sent to.

	bytes callData: The bytes that will be used as the data for the transaction.

	uint callGas: The amount of gas that will be sent with the transaction.

	uint callValue: The amount of ether (in wei) that will be sent with the transaction.

	uint windowStart: The first block number that the transaction will be executable.

	uint8 windowSize: The number of blocks after windowSize during which
the transaction will still be executable.

TODO: more

Architecture

	Overview

	RequestTracker

	RequestFactory

	BlockScheduler and TimestampScheduler

Overview

The Alarm service is made of the following contracts.

	TransactionRequest: Represents a single scheduled transaction.

	RequestFactory: Low level API for creating TransactionRequest contracts.

	RequestTracker: Tracks the scheduled transactions.

	BlockScheduler: High level API for creating TransactionRequest
contracts configured to be executed at a specified block number.

	TimestampScheduler: High level API for creating TransactionRequest
contracts configured to be executed at a certain time, as specified by a timestamp.

Note

Actual functionality of most of the contracts is housed separately
in various libraries.

	
class RequestTracker

	

RequestTracker

The RequestTracker is a database contract which tracks upcoming
transaction requests. It exposes an API suitable for someone wishing to
execute transaction requests to be able to query which requests are scheduled
next as well as other common needs.

This database tracks requests based on the address that submits them. This
allows the RequestTracker to be un-permissioned allowing any address
to report scheduled transactions and to have them stored in their own personal
index. The address which submits the transaction request is referred to as the
scheduler address.

This also enables those executing transaction requests to choose which
scheduler addresses they wish to execute transactions for.

	
class RequestFactory

	

RequestFactory

The RequestFactory contract is designed to be a low-level interface
for developers who need fine-grained control over all of the various
parameters that the TransactionRequest can be configured with.

Parameter validation is available, but not mandatory.

It provides an API for creating new TransactionRequest contracts.

	
class BlockScheduler

	

	
class TimestampScheduler

	

BlockScheduler and TimestampScheduler

The BlockScheduler and TimestampScheduler contracts are a
higher-level interface that most developers should want to use in order to
schedule a transaction for a future block or timestamp.

Both contracts present an identical API for creating new
TransactionRequest contracts. Different from RequestFactory,
request parameters are always validated.

BlockScheduler treats all of the scheduling parameters as meaning
block numbers, while TimestampScheduler treats them as meaning
timestamps and seconds.

Transaction Request

	Interface

	Events

	Data Model
	Retrieving Data

	Transaction Data

	Payment Data

	Claim Data

	Schedule Data

	Meta Data

	Actions
	Cancellation

	Claiming

	Execution

	Retrieval of Ether
	Returning the Claim Deposit

	Retrieving the Payment

	Retrieving the Donation

	Return any extra Ether

	
class TransactionRequest

	

Each TransactionRequest contract represents one transaction that has
been scheduled for future execution. This contract is not intended to be used
directly as the RequestFactory contract can be used to create new
TransactionRequest contracts with full control over all of the
parameters.

Interface

//pragma solidity 0.4.1;

contract TransactionRequestInterface {
 /*
 * Primary actions
 */
 function execute() public returns (bool);
 function cancel() public returns (bool);
 function claim() public returns (bool);

 /*
 * Data accessors
 */
 function requestData() constant returns (address[6],
 bool[3],
 uint[15],
 uint8[1]);
 function callData() constant returns (bytes);

 /*
 * Pull mechanisms for payments.
 */
 function refundClaimDeposit() public returns (bool);
 function sendDonation() public returns (bool);
 function sendPayment() public returns (bool);
 function sendOwnerEther() public returns (bool);
}

Events

	
TransactionRequest.Cancelled(uint rewardPayment, uint measuredGasConsumption)

	

When a request is cancelled, the Cancelled event will be logged. The
rewardPayment is the amount that was paid to the party that cancelled the
request. This will always be 0 when the owner of the request cancels the
request.

	
TransactionRequest.Claimed()

	

When a request is claimed this event is logged.

	
TransactionRequest.Aborted(uint8 reason);

	

When an attempt is made to execute a request but one of the pre-execution
checks fails, this event is logged. The reason is an error code which maps
to the following errors.

	0 => WasCancelled

	1 => AlreadyCalled

	2 => BeforeCallWindow

	3 => AfterCallWindow

	4 => ReservedForClaimer

	5 => StackTooDeep

	6 => InsufficientGas

	
TransactionRequest.Executed(uint payment, uint donation, uint measuredGasConsumption)

	

When a request is successfully executed this event is logged. The payment
is the total payment amount that was awarded for execution. The donation
is the amount that was awarded to the donationBenefactor. The
measuredGasConsumption is the amount of gas that was reimbursed which
should always be slightly greater than the actual gas consumption.

Data Model

The data for the transaction request is split into 5 main sections.

	Transaction Data: Information specific to the execution of the transaction.

	Payment Data: Information related to the payment and donation associated
with this request.

	Claim Data: Information about the claim status for this request.

	Schedule Data: Information about when this request should be executed.

	Meta Data: Information about the result of the request as well as which
address owns this request and which address created this request.

Retrieving Data

The data for a request can be retrieved using two methods.

	
TransactionRequest.requestData()

	

This function returns the serialized request data (excluding the callData)
in a compact format spread across four arrays. The data is returned
alphabetical, first by type, and then by section, then by field.

The return value of this function is four arrays.

	address[6] addressValues

	bool[3] boolValues

	uint256[15] uintValues

	uint8[1] uint8Values

These arrays then map to the following data fields on the request.

	
	Addresses (address)

	
	addressValues[0] => claimData.claimedBy

	addressValues[1] => meta.createdBy

	addressValues[2] => meta.owner

	addressValues[3] => paymentData.donationBenefactor

	addressValues[4] => paymentData.paymentBenefactor

	addressValues[5] => txnData.toAddress

	
	Booleans (bool)

	
	boolValues[0] => meta.isCancelled

	boolValues[1] => meta.wasCalled

	boolValues[2] => meta.wasSuccessful

	
	Unsigned 256 bit Integers (uint aka uint256)

	
	uintValues[0] => claimData.claimDeposit

	uintValues[1] => paymentData.anchorGasPrice

	uintValues[2] => paymentData.donation

	uintValues[3] => paymentData.donationOwed

	uintValues[4] => paymentData.payment

	uintValues[5] => paymentData.paymentOwed

	uintValues[6] => schedule.claimWindowSize

	uintValues[7] => schedule.freezePeriod

	uintValues[8] => schedule.reservedWindowSize

	uintValues[9] => schedule.temporalUnit)

	uintValues[10] => schedule.windowStart

	uintValues[11] => schedule.windowSize

	uintValues[12] => txnData.callGas

	uintValues[13] => txnData.callValue

	uintValues[14] => txnData.requiredStackDepth

	
	Unsigned 8 bit Integers (uint8)

	
	uint8Values[0] => claimData.paymentModifier

	
TransactionRequest.callData()

	

Returns the bytes value of the callData from the request’s transaction
data.

Transaction Data

This portion of the request data deals specifically with the transaction that
has been requested to be sent at a future block or time. It has the following
fields.

	
address toAddress

	The address that the transaction will be sent to.

	
bytes callData

	The bytes that will be sent as the data section of the transaction.

	
uint callValue

	The amount of ether, in wei, that will be sent with the transaction.

	
uint callGas

	The amount of gas that will be sent with the transaction.

	
uint requiredStackDepth

	The number of stack frames required by this transaction.

Payment Data

Information surrounding the payment and donation for this request.

	
uint anchorGasPrice

	The gas price that was used during creation of this request. This is used
to incentivise the use of an adequately low gas price during execution.

See Gas Multiplier for more information on how this is used.

	
uint payment

	The amount of ether in wei that will be paid to the account that executes
this transaction at the scheduled time.

	
address paymentBenefactor

	The address that the payment will be sent to. This is set during
execution.

	
uint paymentOwed

	The amount of ether in wei that is owed to the paymentBenefactor. In
most situations this will be zero at the end of execution, however, in the
event that sending the payment fails the payment amount will be stored here
and retrievable via the sendPayment() function.

	
uint donation

	The amount of ether, in wei, that will be sent to the donationBenefactor
upon execution.

	
address donationBenefactor

	The address that the donation will be sent to.

	
uint donationOwed

	The amount of ether in wei that is owed to the donationBenefactor. In
most situations this will be zero at the end of execution, however, in the
event that sending the donation fails the donation amount will be stored here
and retrievable via the sendDonation() function.

Claim Data

Information surrounding the claiming of this request. See Claiming
for more information.

	
address claimedBy

	The address that has claimed this request. If unclaimed this value will be
set to the zero address 0x00

	
uint claimDeposit

	The amount of ether, in wei, that has been put down as a deposit towards
claiming. This amount is included in the payment that is sent during
request execution.

	
uint8 paymentModifier

	A number constrained between 0 and 100 (inclusive) which will be applied to
the payment for this request. This value is determined based on the time
or block that the request is claimed.

Schedule Data

Information related to the window of time during which this request is
scheduled to be executed.

	
uint temporalUnit

	Determines if this request is scheduled based on block numbers or timestamps.

	Set to 1 for block based scheduling.

	Set to 2 for timestamp based scheduling.

All other values are interpreted as being blocks or timestamps depending on
what this value is set as.

	
uint windowStart

	The block number or timestamp on which this request may first be executed.

	
uint windowSize

	The number of blocks or seconds after the windowStart during which the
request may still be executed. This period of time is referred to as the
execution window. This period is inclusive of it’s endpoints meaning
that the request may be executed on the block or timestamp windowStart +
windowSize.

	
uint freezePeriod

	The number of blocks or seconds prior to the windowStart during which
no activity may occur.

	
uint reservedWindowSize

	The number of blocks or seconds during the first portion of the the
execution window during which the request may only be executed by the
address that address that claimed the call. If the call is not claimed,
then this window of time is treated no differently.

	
uint claimWindowSize

	The number of blocks prior to the freezePeriod during which the call
may be claimed.

Meta Data

Information about ownership, creation, and the result of the transaction request.

	
address owner

	The address that scheduled this transaction request.

	
address createdBy

	The address that created this transaction request. This value is set by
the RequestFactory meaning that if the request is known by the
request factory then this value can be trusted to be the address that
created the contract. When using either the BlockScheduler or
TimestampScheduler this address will be set to the respective
scheduler contract..

	
bool isCancelled

	Whether or not this request has been cancelled.

	
bool wasCalled

	Whether or not this request was executed.

	
bool wasSuccessful

	Whether or not the execution of this request returned true or
false. In most cases this can be an indicator that an execption was
thrown if set to false but there are also certain cases due to quirks
in the EVM where this value may be true even though the call
technically failed.

Actions

The TransactionRequest contract has three primary actions that can be performed.

	Cancellation: Cancels the request.

	Claiming: Reserves exclusive execution rights during a portion of the execution window.

	Execution: Sends the requested transaction.

Cancellation

	
TransactionRequest.cancel()

	

Cancellation can occur if either of the two are true.

	The current block or time is before the freeze period and the request has not
been claimed.

	The current block or time is after the execution window and the request was
not executed.

When cancelling prior to the execution window, only the owner of the call
may trigger cancellation.

When cancelling after the execution window, anyone may trigger cancellation.
To ensure that funds are not forever left to rot in these contracts, there is
an incentive layer for this function to be called by others whenever a request
fails to be executed. When cancellation is executed by someone other than the
owner of the contract, 1% of what would have been paid to someone for
execution is paid to the account that triggers cancellation.

Claiming

	
TransactionRequest.claim()

	

Claiming may occur during the claimWindowSize number of blocks or seconds
prior to the freeze period. For example, if a request was configured as
follows:

	windowStart: block #500

	freezePeriod: 10 blocks

	claimWindowSize: 100 blocks

In this case, the call would first be claimable at block 390. The last block
in which it could be claimed would be block 489.

See the Claiming section of the documentation for details
about the claiming process.

Execution

	
TransactionRequest.execute()

	

Execution may happen beginning at the block or timestamp denoted by the
windowStart value all the way through and including the block or timestamp
denoted by windowStart + windowSize.

See the Execution section of the documentation for details about the
execution process.

Retrieval of Ether

All payments are automatically returned as part of normal request execution and
cancellation. Since it is possible for these payments to fail, there are
backup methods that can be called individually to retrieve these different
payment or deposit values.

All of these functions may be called by anyone.

Returning the Claim Deposit

	
TransactionRequest.refundClaimDeposit()

	

This method will return the claim deposit if either of the following conditions
are met.

	The request was cancelled.

	The execution window has passed.

Retrieving the Payment

	
TransactionRequest.sendPayment()

	

This function will send the paymentOwed value to the
paymentBenefactor. This is only callable after the execution window has
passed.

Retrieving the Donation

	
TransactionRequest.sendDonation()

	

This function will send the donationOwed value to the
donationBenefactor. This is only callable after the execution window has
passed.

Return any extra Ether

This function will send any exta ether in the contract that is not owed as a
donation or payment and that is not part of the claim deposit back to the
owner of the request. This is only callable if one of the following
conditions is met.

	The request was cancelled.

	The execution window has passed.

Claiming

	The Problem

	The Solution

	Claim Deposit

	How claiming effects payment

	Gas Costs

	
class TransactionRequest

	

The Problem

To understand the claiming mechanism it is important to understand the problem
it solves.

Consider a situation where there are two people Alice and Bob competing to
execute the same request that will issue a payment of 100 wei to whomever
executes it.

Suppose that Alice and Bob both send their execution transactions at
approximately the same time, but out of luck, Alice’s transaction is included
before Bob’s.

Alice will receive the 100 wei payment, while Bob will receive no payment as
well as having paid the gas costs for his execution transaction that was
rejected. Suppose that the gas cost Bob has now incurred are 25 wei.

In this situation we could assume that Alice and bob have a roughly 50% chance
of successfully executing any given transaction request, but since 50% of their
attempts end up costing them money, their overall profits are being reduced by
each failed attempt.

In this model, their expected payout is 75 wei for every two transaction
requests they try to execute.

Now suppose that we add more competition via three additional people attempting
to execute each transaction. Now Bob and Alice will only end up executing an
average of 1 out of every 5 transaction requests, with the other 4 costing them
25 wei each. Now nobody is making a profit because the cost of the failed
transactions now cancels out any profit they are making.

The Solution

The claiming process is the current solution to this issue.

Prior to the execution window there is a section of time referred to as the
claim window during which the request may be claimed by a single party for
execution. Part of claiming includes putting down a deposit.

When a request has been claimed, the claimer is granted exclusive rights to
execute the request during a window of blocks at the beginning of the execution
window.

Whomever ends up executing the request receives the claim deposit as part of
their payment. This means that if the claimer fulfills their commitment to
execute the request their deposit is returned to them intact. Otherwise, if
someone else executes the request then they will receive the deposit as an
additional reward.

Claim Deposit

In order to claim a request you must put down a deposit. This deposit amount
is equal to twice the payment amount associated with this request.

The deposit is returned during execution, or when the call is cancelled.

How claiming effects payment

A claimed request does not pay the same as an unclaimed request. The earlier the
request is claimed, the less it will pay, and conversely, the later the request is
claimed, the more it pays.

This is a linear transition from getting paid 0% of the total payment if the
request is claimed at the earliest possible time up to 100% of the total payment
at the very end of the claim window. This multiplier is referred to as the
payment modifier.

It is important to note that the payment modifier does not apply to gas
reimbursements which are always paid in full. No matter when a call is
claimed, or how it is executed, it will always provide a full gas
reimbursement. The only case where this may end up not being true is in cases
where the gas price has changed drastically since the time the request was
scheduled and the contract’s endowment is now sufficiently low that it is not
longer funded with sufficient ether to cover these costs.

For example, if the request has a payment of 2000 wei, a
claimWindowSize of 255 blocks, a freezePeriod of 10 blocks, and a
windowStart set at block 500. In this case, the request would have a
payment of 0 at block 235. At block 235 it would provide a payment of 20 wei.
At block 245 it would pay 220 wei or 11% of the total payment. At block 489 it
would pay 2000 wei or 100% of the total payment.

Gas Costs

The gas costs for claim transactions are not reimbursed. They are considered
the cost of doing business and should be taken into consideration when claiming
a request. If the request is claimed sufficiently early in the claim window it
is possible that the payment will not fully offset the transaction costs of
claiming the request.

Execution

	Important Windows of Blocks/Time
	Freeze Window

	The Execution Window

	Reserved Execution Window

	The Execution Lifecycle
	Part 1: Validation
	Check #1: Not already called

	Check #2: Not Cancelled

	Check #3: Not before execution window

	Check #4: Not after execution window

	Check #5 and #6: Within the execution window and authorized

	Check #7: Stack Depth Check

	Check #8: Sufficient Call Gas

	Part 2: Execution

	Part 3: Accounting

	Gas Multiplier

	Sending the Execution Transaction
	Gas Reimbursement

	Minimum ExecutionGas

	
class TransactionRequest

	

Warning

Anyone wishing to write their own execution client should be sure they fully
understand all of the intricacies related to the execution of transaction
requests. The guarantees in place for those executing requests are only in
place if the executing client is written appropriately.

Important Windows of Blocks/Time

Freeze Window

Each request may specify a freezePeriod. This defines a number of blocks
or seconds prior to the windowStart during which no actions may be
performed against the request. This is primarily in place to provide some
level of guarantee to those executing the request. For anyone executing
requests, once the request enters the freezePeriod they can know that it
will not be cancelled and that they can send the executing transaction without
fear of it being cancelled at the last moment before the execution window
starts.

The Execution Window

The execution window is the range of blocks or timestamps during which the
request may be executed. This window is defined as the range of blocks or
timestamps from windowStart till windowStart + windowSize.

For example, if a request was scheduled with a windowStart of block 2100
and a windowSize of 255 blocks, the request would be allowed to be executed
on any block such that windowStart <= block.number <= windowStart +
windowSize.

As another example, if a request was scheduled with a windowStart of block 2100
and a windowSize of 0 blocks, the request would only be allowed to be
executed at block 2100.

Very short windowSize configurations likely lower the chances of your
request being executed at the desired time since it is not possible to force a
transaction to be included in a specific block and thus the party executing
your request may either fail to get the transaction included in the correct
block or they may choose to not try for fear that their transaction will not
be included in the correct block and thus they will not recieve a reimbursment
for their gas costs.

Similarly, very short ranges of time for timestamp based calls may even make it
impossible to execute the call. For example, if you were to specify a
windowStart at 1480000010 and a windowSize of 5 seconds then the
request would only be executable on blocks whose block.timestamp satisfied
the conditions 1480000010 <= block.timestamp <= 1480000015. Given that it
is entirely possible that no blocks are mined within this small range of
timestamps there would never be a valid block for your request to be executed.

Note

It is worth pointing out that actual size of the execution window will
always be windowSize + 1 since the bounds are inclusive.

Reserved Execution Window

Each request may specify a claimWindowSize which defines a number of blocks
or seconds at the beginning of the execution window during which the request
may only be executed by the address which has claimed the request. Once this
window has passed the request may be executed by anyone.

Note

If the request has not been claimed this window is treated no differently than
the remainder of the execution window.

For example, if a request specifies a windowStart of block 2100, a
windowSize of 100 blocks, and a reservedWindowSize of 25 blocks then in
the case that the request was claimed then the request would only be executable
by the claimer for blocks satisfying the condition 2100 <= block.number <
2125.

Note

It is worth pointing out that unlike the execution window the reserved
execution window is not inclusive of it’s righthand bound.

If the reservedWindowSize is set to 0, then there will be no window of
blocks during which the execution rights are exclusive to the claimer.
Similarly, if the reservedWindowSize is set to be equal to the full size of
the execution window or windowSize + 1 then there will be not window
after the reserved execution window during which execution can be triggered
by anyone.

The RequestFactory will allow a reservedWindowSize of any value
from 0 up to windowSize + 1, however, it is highly recommended that you
pick a number around 16 blocks or 270 seconds, leaving at least the same amount
of time unreserved during the second portion of the execution window. This
ensures that there is sufficient motivation for your call to be claimed because
the person claiming the call knows that they will have ample opportunity to
execute it when the execution window comes around. Conversely, leaving at
least as much time unreserved ensures that in the event that your request is
claimed but the claimer fails to execute the request that someone else has
plenty of of time to fulfill the execution before the execution window ends.

The Execution Lifecycle

When the :method:`TransactionRequest.execute()` function is called the contract
goes through three main sections of logic which are referred to as a whole as
the execution lifecycle.

	Validation: Handles all of the checks that must be done to ensure that all
of the conditions are correct for the requested transaction to be executed.

	Execution: The actual sending of the requested transaction.

	Accounting: Computing and sending of all payments to the necessary parties.

Part 1: Validation

During the validation phase all of the following validation checks must pass.

Check #1: Not already called

Requires the wasCalled attribute of the transaction request to
be false.

Check #2: Not Cancelled

Requires the isCancelled attribute of the transaction request to
be false.

Check #3: Not before execution window

Requires block.number or block.timestamp to be greater than or equal to
the windowStart attribute.

Check #4: Not after execution window

Requires block.number or block.timestamp to be less than or equal to
windowStart + windowSize.

Check #5 and #6: Within the execution window and authorized

	
	If the request is claimed

	
	
	If the current time is within the reserved execution window

	
	Requires that msg.sender to be the claimedBy address

	
	Otherwise during the remainder of the execution window

	
	Always passes.

	
	If the request is not claimed.

	
	Always passes if the current time is within the execution window

Check #7: Stack Depth Check

In order to understand this check you need to understand the problem it solves.
One of the more subtle attacks that can be executed against a requested
transaction is to force it to fail by ensuring that it will encounter the EVM
stack limit. Without this check the executor of a transaction request could
force any request to fail by arbitrarily increasing the stack depth prior to
execution such that when the transaction is sent it encounters the maximum
stack depth and fails. From the perspective of the TransactionRequest
contract this sort of failure is indistinguishable from any other exception.

In order to prevent this, prior to execution, the TransactionRequest
contract will ensure that the stack can be extended by a number of stack frames
equal to requiredStackDepth. This check passes if the stack can be
extended by this amount.

This check will be skipped if msg.sender == tx.origin since in this case it
is not possible for the stack to have been arbitrarily extended prior to
execution.

Check #8: Sufficient Call Gas

Requires that the current value of msg.gas be greater than the minimum
call gas. See minimum-call-gas for details on how to compute this
value as it includes both the callGas amount as well as some extra for the
overhead involved in execution.

Part 2: Execution

The execution phase is very minimalistic. It marks the request as having been
called and then dispatches the requested transaction, storing the success or
failure on the wasSuccessful attribute.

Part 3: Accounting

The accounting phase accounts for all of the payments and reimbursements that
need to be sent.

The donation payment is the mechanism through which developers can earn a
return on their development efforts on the Alarm service. For the official
scheduler deployed as part of the alarm service this defaults to 1% of the
default payment. This value is multiplied by the gas multiplier (see
Gas Multiplier) and sent to the donationBenefactor address.

Next the payment for the actual execution is computed. The formula for this is
as follows:

totalPayment = payment * gasMultiplier + gasUsed * tx.gasprice + claimDeposit

The three components of the totalPayment are as follows.

	payment * gasMultiplier: The actual payment for execution.

	gasUsed * tx.gasprice: The reimbursement for the gas costs of execution.
This is not going to exactly match the actual gas costs, but it will always
err on the side of overpaying slightly for gas consumption.

	claimDeposit: If the request is not claimed this will be 0. Otherwise,
the claimDeposit is always given to the executor of the request.

After these payments have been calculated and sent, the Executed event is
logged, and any remaining ether that is not allocated to be paid to any party
is sent back to the address that scheduled the request.

Gas Multiplier

To understand the gas multiplier you must understand the problem it solves.

Transactions requests always provide a 100% reimbursment of gas costs. This is
implemented by requiring the scheduler to provide sufficient funds up-front to
cover the future gas costs of their transaction. Ideally we want the sender of
the transaction that executes the request to be motivated to use a gasPrice
that is as low as possible while still allowing the transaction to be included
in a block in a timely manner.

A naive approach would be to specify a maximum gas price that the scheduler
is willing to pay. This might be possible for requests that will be processed
a short time in the future, but for transactions that are scheduled
sufficiently far in the future it isn’t feasible to set a gas price that is
going to reliably reflect the current normal gas prices at that time.

In order to mitigate this issue, we instead provide a financial incentive to
the party executing the request to provide as low a gas cost as possible while
still getting their transaction included in a timely manner.

Those executing the request are already sufficiently motivated to provide a gas
price that is high enough to get the transaction mined in a reasonable time
since if the price they specify is too low it is likely that someone else will
execute the request before them, or that their transaction will not be included
before the execution window closes.

So, to provide incentive to keep the gas cost reasonably low, the gas
multiplier concept was introduced. Simply put, the multiplier produces a
number between 0 and 2 which is applid to the payment that will be sent for
fulfilling the request.

At the time of scheduling, the gasPrice of the scheduling transaction is
stored. We refer to this as the anchorGasPrice as we can assume with some
reliability that this value is a reasonable gas cost that the scheduler is
willing to pay.

At the time of execution, the following will occur based on the gasPrice
used for the executing transaction:

	If gasPrice is equal to the anchorGasPrice then the gas
multiplier will be 1, meaning that the payment will be issued as is.

	When the gasPrice is greater than the anchorGasPrice, the gas
multiplier will approach 0 meaning that the payment will steadily get
smaller for higher gas prices.

	When the gasPrice is less than the anchorGasPrice, the gas
multiplier will approach 2 meaning that the payment will steadily get
larger for lower gas prices.

The formula used is the following.

	If the execution gasPrice is greater than anchorGasPrice:

gasMultiplier = anchorGasPrice / tx.gasprice

	Else (if the execution gasPrice is less than or equal to the
anchorGasPrice:

gasMultiplier = 2 - (anchorGasPrice / (2 * anchorGasPrice - tx.gasprice))

For example, if at the time of scheduling the gas price was 100 wei and the
executing transaction uses a gasPrice of 200 wei, then the gas multiplier
would be 100 / 200 => 0.5.

Alternatively, if the transaction used a gasPrice of 75 wei then the gas
multiplier would be 2 - (100 / (2 * 100 - 75)) => 1.2.

Sending the Execution Transaction

In addition to the pre-execution validation checks, the following things should
be taken into considuration when sending the executing transaction for a
request.

Gas Reimbursement

If the gasPrice of the network has increased significantly since the
request was scheduled it is possible that it no longer has sufficient ether to
pay for gas costs. The following formula can be used to compute the maximum
amount of gas that a request is capable of paying:

(request.balance - 2 * (payment + donation)) / tx.gasprice

If you provide a gas value above this amount for the executing transaction then
you are not guaranteed to be fully reimbursed for gas costs.

Minimum ExecutionGas

When sending the execution transaction, you should use the following rules to
determine the minimum gas to be sent with the transaction:

	Start with a baseline of the callGas attribute.

	Add 180000 gas to account for execution overhead.

	If you are proxying the execution through another contract such that during
execution msg.sender != tx.origin then you need to provide an additional
700 * requiredStackDepth gas for the stack depth checking.

For example, if you are sending the execution transaction directly from a
private key based address, and the request specified a callGas value of
120000 gas then you would need to provide 120000 + 180000 => 300000 gas.

If you were executing the same request, except the execution transaction was
being proxied through a contract, and the request specified a
requiredStackDepth of 10 then you would need to provide 120000 + 180000 +
700 * 10 => 307000 gas.

Request Factory

	Introduction

	Interface

	Events

	Function Arguments

	Validation
	Check #1: Insufficient Endowment

	Check #2: Invalid Reserved Window

	Check #3: Invalid Temporal Unit

	Check #4: Execution Window Too Soon

	Check #5: Invalid Stack Depth Check

	Check #6: Call Gas too high

	Check #7: Empty To Address

	Creation of Transaction Requests

	Tracking API

	
class RequestFactory

	

Introduction

The RequestFactory contract is the lowest level API for creating
transaction requests. It handles:

	Validation and Deployment of TransactionRequest contracts

	Tracking of all addresses that it has deployed.

This contract is designed to allow tuning of all transaction parameters and is
probably the wrong API to integrate with if your goal is to simply schedule
transactions for later execution. The Request Factory API is likely the
right solution for these use cases.

Interface

//pragma solidity 0.4.1;

contract RequestFactoryInterface {
 event RequestCreated(address request);

 function createRequest(address[3] addressArgs,
 uint[11] uintArgs,
 bytes callData) returns (address);
 function validateRequestParams(address[3] addressArgs,
 uint[11] uintArgs,
 bytes callData,
 uint endowment) returns (bool[7]);
 function createValidatedRequest(address[3] addressArgs,
 uint[11] uintArgs,
 bytes callData) returns (address);
 function isKnownRequest(address _address) returns (bool);
}

Events

	
RequestFactory.RequestCreated(address request)

	

The RequestCreated event will be logged for each newly created
TransactionRequest.

	
RequestFactory.ValidationError(uint8 error)

	

The ValidationError event will be logged when an attempt is made to create
a new TransactionRequest which fails due to validation errors. The error represents an error code that maps to the following errors.

	0 => InsufficientEndowment

	0 => ReservedWindowBiggerThanExecutionWindow

	0 => InvalidTemporalUnit

	0 => ExecutionWindowTooSoon

	0 => InvalidRequiredStackDepth

	0 => CallGasTooHigh

	0 => EmptyToAddress

Function Arguments

Because of the call stack limitations imposed by the EVM, all of the following
functions on the RequestFactory contract take their arguments in the
form of the following form.

	address[3] addressArgs

	uint256[11] uintArgs

	bytes callData

The arrays map to to the following TransactionRequest attributes.

	
	Addresses (address)

	
	addressArgs[0] => meta.owner

	addressArgs[1] => paymentData.donationBenefactor

	addressArgs[2] => txnData.toAddress

	
	Unsigned Integers (uint aka uint256)

	
	uintArgs[0] => paymentData.donation

	uintArgs[1] => paymentData.payment

	uintArgs[2] => schedule.claimWindowSize

	uintArgs[3] => schedule.freezePeriod

	uintArgs[4] => schedule.reservedWindowSize

	uintArgs[5] => schedule.temporalUnit

	uintArgs[6] => schedule.windowStart

	uintArgs[7] => schedule.windowSize

	uintArgs[8] => txnData.callGas

	uintArgs[9] => txnData.callValue

	uintArgs[10] => txnData.requiredStackDepth

Validation

	
RequestFactory.validateRequestParams(address[3] addressArgs, uint[11] uintArgs, bytes callData, uint endowment) returns (bool[7] result)

	

The validateRequestParams function can be used to validate the parameters
to both createRequest and createValidatedRequest. The additional
parameter endowment should be the amount in wei that will be sent during
contract creation.

This function returns an array of bool values. A true means that the
validation check succeeded. A false means that the check failed. The
result array’s values map to the following validation checks.

Check #1: Insufficient Endowment

	result[0]

Checks that the provided endowment is sufficient to pay for the donation
and payment as well as gas reimbursment.

The required minimum endowment can be computed as the sum of the following:

	callValue to provide the ether that will be sent with the transaction.

	2 * payment to pay for maximum possible payment

	2 * donation to pay for maximum possible donation

	2 * callGas * tx.gasprice to pay for callGas with up to a 2x increase
in the network gas price.

	2 * 700 * requiredStackDepth * tx.gasprice to pay gas for the stack depth
checking with up to a 2x increase in network gas costs.

	2 * 180000 * tx.gasprice to pay for the gas overhead involved in
transaction execution.

Check #2: Invalid Reserved Window

	result[1]

Checks that the reservedWindowSize is less than or equal to windowSize +
1.

Check #3: Invalid Temporal Unit

	result[2]

Checks that the temporalUnit is either 1 to specify block based scheduling,
or 2 to specify timestamp based scheduling.

Check #4: Execution Window Too Soon

	result[3]

Checks that the current now value is not greater than windowStart -
freezePeriod.

	When using block based scheduling, block.number is used for the now
value.

	When using timestamp based scheduling, block.timestamp is used.

Check #5: Invalid Stack Depth Check

	result[4]

Checks that the requiredStackDepth is less than or equal to 1000.

Check #6: Call Gas too high

	result[5]

Check that the specified callGas value is not greater than the current
gasLimit - 140000 where 140000 is the gas overhead of request
execution.

Check #7: Empty To Address

	result[6]

Checks that the toAddress is not the null address
0x00.

Creation of Transaction Requests

	
RequestFactory.createRequest(address[3] addressArgs, uint[11] uintArgs, bytes callData) returns (address)

	

This function deploys a new TransactionRequest contract. This
function does not perform any validation and merely directly deploys the new
contract.

Upon successful creation the RequestCreated event will be logged.

	
RequestFactory.createValidatedRequest(address[3] addressArgs, uint[11] uintArgs, bytes callData) returns (address)

	

This function first performs validation of the provided arguments and then
deploys the new TransactionRequest contract when validation succeeds.

When validation fails, a ValidationError event will be logged for each
validation error that occured.

Tracking API

	
RequestFactory.isKnownRequest(address _address) returns (bool)

	

This method will return true if the address is a
TransactionRequest that was created from this contract.

Request Tracker

	Introduction

	Interface

	Database Structure

	Chain of Trust

	API

	
class RequestTracker

	

Introduction

The RequestTracker contract is a simple database contract that exposes
an API suitable for querying for scheduled transaction requests. This database
is permissionless in so much as it partitiions transaction requests by the
address that reported them. This means that anyone can deploy a new request
scheduler that conforms to whatever specific rules they may need for their use
case and configure it to report any requests it schedules with this tracker
contract.

Assuming that such a scheduler was written to still use the
RequestFactory contract for creation of transaction requests, the
standard execution client will pickup and execute any requests that this
scheduler creates.

Interface

//pragma solidity 0.4.1;

contract RequestTrackerInterface {
 function getWindowStart(address factory, address request) constant returns (uint);
 function getPreviousRequest(address factory, address request) constant returns (address);
 function getNextRequest(address factory, address request) constant returns (address);
 function addRequest(address request, uint startWindow) constant returns (bool);
 function removeRequest(address request) constant returns (bool);
 function isKnownRequest(address factory, address request) constant returns (bool);
 function query(address factory, bytes2 operator, uint value) constant returns (address);
}

Database Structure

All functions exposed by the RequestTracker take an address as the
first argument. This is the address that reported the request into the
tracker. This address is referred to as the scheduling address which merely
means that it is the address that reported this request into the tracker. Each
scheduling address effectively receives it’s own database.

All requests are tracked and ordered by their windowStart value. The
tracker does not distinguish between block based scheduling and timestamp based
scheduling.

It is possible for a single TransactionRequest contract to be listed
under multiple scheduling addresses since any address may report a request into
the database.

Chain of Trust

Since this database is permissionless, if you plan to consume data from it, you
should validate the following things.

	Check with the RequestFactory that the request address is known
using the :method:`RequestFactory.isKnownRequest()` function.

	Check that the windowStart attribute of the TransactionRequest
contract matches the registered windowStart value from the
RequestTracker.

Any request created by the RequestFactory contract regardless of how
it was created should be safe to execute using the provided execution client.

API

	
RequestTracker.isKnownRequest(address scheduler, address request) constant returns (bool)

	

Returns true or false depending on whether this address has been
registered under this scheduler address.

	
RequestTracker.getWindowStart(address scheduler, address request) constant returns (uint)

	

Returns the registered windowStart value for the request. A return value
of 0 indicates that this address is not known.

	
RequestTracker.getPreviousRequest(address scheduler, address request) constant returns (address)

	

Returns the address of the request who’s windowStart comes directly before
this one.

	
RequestTracker.getNextRequest(address scheduler, address request) constant returns (address)

	

Returns the address of the request who’s windowStart comes directly after
this one.

	
RequestTracker.addRequest(address request, uint startWindow) constant returns (bool)

	

Add an address into the tracker. The msg.sender address will be used as
the scheduler address to determine which database to use.

	
RequestTracker.removeRequest(address request) constant returns (bool)

	

Remove an address from the tracker. The msg.sender address will be used as
the scheduler address to determine which database to use.

	
RequestTracker.query(address scheduler, bytes2 operator, uint value) constant returns (address)

	

Query the database for the given scheduler. Returns the address of the 1st
record which evaluates to true for the given query.

Allowed values for the operator parameter are:

	'>': For strictly greater than.

	'>=': For greater than or equal to.

	'<': For strictly less than.

	'<=': For less than or equal to.

	'==': For less than or equal to.

The value parameter is what the windowSize for each record will be
compared to.

If the return address is the null address
0x00 then no records matched.

Request Factory

	Introduction

	Interface

	Defaults

	API

	Endowments

	
class Scheduler

	

Introduction

The Scheduler contract is the high level API for scheduling
transaction requests. It exposes a very minimal subset of the full parameters
that can be specified for a TransactionRequest in order to provide a
simplified scheduling API with fewer foot-guns.

The Alarm service exposes two schedulers.

	BlockScheduler for block based scheduling.

	TimestampScheduler for timestamp based scheduling.

Both of these contracts present an identical API. The only difference is which
temporalUnit that each created TransactionRequest contract is
configured with.

Interface

//pragma solidity 0.4.1;

import {RequestScheduleLib} from "contracts/RequestScheduleLib.sol";
import {SchedulerLib} from "contracts/SchedulerLib.sol";

contract SchedulerInterface {
 using SchedulerLib for SchedulerLib.FutureTransaction;

 address public factoryAddress;

 RequestScheduleLib.TemporalUnit public temporalUnit;

 /*
 * Local storage variable used to house the data for transaction
 * scheduling.
 */
 SchedulerLib.FutureTransaction futureTransaction;

 /*
 * When applied to a function, causes the local futureTransaction to
 * get reset to it's defaults on each function call.
 *
 * TODO: Compare to actual enum values when solidity compiler error is fixed.
 * https://github.com/ethereum/solidity/issues/1116
 */
 modifier doReset {
 if (uint(temporalUnit) == 1) {
 futureTransaction.resetAsBlock();
 } else if (uint(temporalUnit) == 2) {
 futureTransaction.resetAsTimestamp();
 } else {
 throw;
 }
 _
 }

 /*
 * Full scheduling API exposing all fields.
 *
 * uintArgs[0] callGas
 * uintArgs[1] callValue
 * uintArgs[2] windowSize
 * uintArgs[3] windowStart
 * bytes callData;
 * address toAddress;
 */
 function scheduleTransaction(address toAddress,
 bytes callData,
 uint[4] uintArgs) doReset public returns (address);

 /*
 * Full scheduling API exposing all fields.
 *
 * uintArgs[0] callGas
 * uintArgs[1] callValue
 * uintArgs[2] donation
 * uintArgs[3] payment
 * uintArgs[4] requiredStackDepth
 * uintArgs[5] windowSize
 * uintArgs[6] windowStart
 * bytes callData;
 * address toAddress;
 */
 function scheduleTransaction(address toAddress,
 bytes callData,
 uint[7] uintArgs) doReset public returns (address);
}

Defaults

The following defaults are used when creating a new TransactionRequest
contract via either Scheduler contract.

	donationBenefactor: 0xd3cda913deb6f67967b99d67acdfa1712c293601 which
is the address of Piper Merriam, the creator of this project.

	payment: 1000000 * tx.gasprice set at the time of scheduling.

	donation: 10000 * tx.gasprice or 1/100th of the default payment.

	reservedWindowSize: 16 blocks or 5 minutes.

	freezePeriod: 10 blocks or 3 minutes

	claimWindowSize: 255 blocks or 60 minutes.

	requiredStackDepth: 10 stack frames.

API

There are two scheduleTransaction methods on each Scheduler
contract with different call signatures.

	
Scheduler.scheduleTransaction(address toAddress, bytes callData, uint[4] uintArgs) returns (address)

	

This method allows for configuration of the most common parameters needed for
transaction scheduling. Due to EVM restrictions, all of the unsigned integer
arguments are passed in as an array. The array values are mapped to the
TransactionRequest attributes as follows.

	uintArgs[0] => callGas

	uintArgs[1] => callValue

	uintArgs[2] => windowSize

	uintArgs[3] => windowStart

	
Scheduler.scheduleTransaction(address toAddress, bytes callData, uint[4] uintArgs) returns (address)

	

This method presents three extra fields allowing more fine controll for
transaction scheduling. Due to EVM restrictions, all of the unsigned integer
arguments are passed in as an array. The array values are mapped to the
TransactionRequest attributes as follows.

	uintArgs[0] => callGas

	uintArgs[1] => callValue

	uintArgs[2] => donation

	uintArgs[3] => payment

	uintArgs[4] => requiredStackDepth

	uintArgs[5] => windowSize

	uintArgs[6] => windowStart

Endowments

When scheduling a transaction, you must provide sufficient ether to cover all
of the execution costs with some buffer to account for possible changes in the
network gas price. See Check #1: Insufficient Endowment for more information on how to compute
the endowment.

CLI Interface

	Requirements

	Installation

	The eth_alarm executable
	Rollbar Integration

	Running a server
	1. Setup an EC2 Instance

	2. Provision the Server

	3. Mount the extra volume

	4. Install Geth or Parity

	5. Install the Alarm Client

	6. Configure Supervisord

	7. Generate an account

	8. Turn it on

	9. Monitoring

	10. System Clock

The alarm service ships with a command line interface that can be used to
interact with the service in various ways.

Requirements

The ethereum-alarm-clock-client python package requires some system
dependencies to install. Please see the pyethereum documentation [https://github.com/ethereum/pyethereum/wiki/Developer-Notes] for more
information on how to install these.

This package is only tested against Python 3.5. It may work on other versions
but they are explicitely not supported.

This package is only tested on unix based platforms (OSX and Linux). It may
work on other platforms but they are explicitely not supported.

Installation

The ethereum-alarm-clock-client package can be installed using pip like this.

$ pip install ethereum-alarm-clock-client

Or directly from source like this.

$ python setup.py install

If you are planning on modifying the code or developing a new feature you
should instead install like this.

$ python setup.py develop

The eth_alarm executable

Once you’ve installed the package you should have the eth_alarm executable
available on your command line.

$ eth_alarm
Usage: eth_alarm [OPTIONS] COMMAND [ARGS]...

Options:
 -t, --tracker-address TEXT The address of the RequestTracker contract
 that should be used.
 -f, --factory-address TEXT The address of the RequestFactory contract
 that should be used.
 --payment-lib-address TEXT The address of the PaymentLib contract that
 should be used.
 -r, --request-lib-address TEXT The address of the RequestLib contract that
 should be used.
 -l, --log-level INTEGER Integer logging level - 10:DEBUG 20:INFO
 30:WARNING 40:ERROR
 -p, --provider TEXT Web3.py provider type to use to connect to
 the chain. Supported values are 'rpc',
 'ipc', or any dot-separated python path to a
 web3 provider class
 --ipc-path TEXT Path to the IPC socket that the IPCProvider
 will connect to.
 --rpc-host TEXT Hostname or IP address of the RPC server
 --rpc-port INTEGER The port to use when connecting to the RPC
 server
 -a, --compiled-assets-path PATH
 Path to JSON file which contains the
 compiled contract assets
 --back-scan-seconds INTEGER Number of seconds to scan into the past for
 timestamp based calls
 --forward-scan-seconds INTEGER Number of seconds to scan into the future
 for timestamp based calls
 --back-scan-blocks INTEGER Number of blocks to scan into the past for
 block based calls
 --forward-scan-blocks INTEGER Number of blocks to scan into the future for
 block based calls
 --help Show this message and exit.

Commands:
 client:monitor Scan the blockchain for events from the alarm...
 client:run
 repl Drop into a debugger shell with most of what...
 request:create Schedule a transaction to be executed at a...

Rollbar Integration

Monitoring these sorts of things can be difficult. I am a big fan of the
rollbar [https://rollbar.com/] service which provides what I feel is a very solid monitoring and
log management solution.

To enable rollbar logging with the eth_alarm client you’ll need to do the
following.

	Install the python rollbar package.
* $ pip install rollbar

	Run eth_alarm with the following environment variables set.
* ROLLBAR_SECRET set to the server side token that rollbar provides.
* ROLLBAR_ENVIRONMENT set to a string such as ‘production’ or ‘ec2-instance-abcdefg’`.

Running a server

The scheduler runs nicely on the small AWS EC2 instance size. The following
steps should get an EC2 instance provisioned with the scheduler running.

1. Setup an EC2 Instance

	Setup an EC2 instance running Ubuntu. The smallest instance size works fine.

	Add an extra volume to store your blockchain data. 20GB should be sufficient
for a short while (after April 2017) if storing the entire history,
block-for-block, is not required. Otherwise, a much larger size should be
used.

	Optionally mark this volume to persist past termination of the instance so
that you can reuse your blockchain data.

	Make sure that the security policy leaves 30303 open to connections from
the outside world.

2. Provision the Server

	sudo apt-get update --fix-missing

	sudo apt-get install -y supervisor

	sudo apt-get install -y python3-dev python build-essential libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev python-virtualenv libffi-dev autoconf

3. Mount the extra volume

The following comes from the AWS Documentation [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-using-volumes.html] and will only work verbatim
if your additional volume is /dev/xvdb.

	sudo mkfs -t ext4 /dev/xvdb

	sudo mkdir -p /data

	sudo mount /dev/xvdb /data

	sudo mkdir -p /data/ethereum

	sudo chown ubuntu /data/ethereum

Modify /etc/fstab to look like the following. This ensures the extra volume
will persist through restarts.

#/etc/fstab
LABEL=cloudimg-rootfs / ext4 defaults,discard 0 0
/dev/xvdb /data ext4 defaults,nofail 0 2

Run sudo mount -a If you don’t get any errors then you haven’t borked your
etc/fstab

4. Install Geth or Parity

Install the go-ethereum client.

	sudo apt-get install -y software-properties-common

	sudo add-apt-repository -y ppa:ethereum/ethereum

	sudo apt-get update

	sudo apt-get install -y ethereum

or install the parity client.

	bash <(curl https://get.parity.io -Lk)

5. Install the Alarm Client

Install the Alarm client.

	mkdir -p ~/alarm-0.8.0

	cd ~/alarm-0.8.0

	virtualenv -p /usr/bin/python3.5 env && source env/bin/activate

	pip install setuptools --upgrade

	pip install ethereum-alarm-clock-client==8.0.0b1

6. Configure Supervisord

Supervisord will be used to manage both geth and eth_alarm.

If you are using Go-Ethereum, put the following in /etc/supervisord/conf.d/geth.conf

[program:geth]
command=geth --datadir /data/ethereum --unlock 0 --password /home/ubuntu/scheduler_password --fast
user=ubuntu
stdout_logfile=/var/log/supervisor/geth-stdout.log
stderr_logfile=/var/log/supervisor/geth-stderr.log
autorestart=true
autostart=false

and the following in /etc/supervisord/conf.d/scheduler-v8.conf

[program:scheduler-v8]
user=ubuntu
command=/home/ubuntu/alarm-0.8.0/env/bin/eth_alarm --ipc-path /data/ethereum/geth.ipc client:run
directory=/home/ubuntu/alarm-0.8.0/
environment=PATH="/home/ubuntu/alarm-0.8.0/env/bin"
stdout_logfile=/var/log/supervisor/scheduler-v8-stdout.log
stderr_logfile=/var/log/supervisor/scheduler-v8-stderr.log
autorestart=true
autostart=false

If you are using Parity, put the following in /etc/supervisord/conf.d/parity.conf

[program:parity]
command=parity --db-path /data/ethereum --unlock <your-account-address> --password /home/ubuntu/scheduler_password
user=ubuntu
stdout_logfile=/var/log/supervisor/parity-stdout.log
stderr_logfile=/var/log/supervisor/parity-stderr.log
autorestart=true
autostart=false

and the following in /etc/supervisord/conf.d/scheduler-v8.conf

[program:scheduler-v8]
user=ubuntu
command=/home/ubuntu/alarm-0.8.0/env/bin/eth_alarm --ipc-path /home/ubuntu/.parity/jsonrpc.ipc client:run
directory=/home/ubuntu/alarm-0.8.0/
environment=PATH="/home/ubuntu/alarm-0.8.0/env/bin"
stdout_logfile=/var/log/supervisor/scheduler-v8-stdout.log
stderr_logfile=/var/log/supervisor/scheduler-v8-stderr.log
autorestart=true
autostart=false

7. Generate an account

For Go-Ethereum

	$ geth --datadir /data/ethereum account new

For parity

	$ parity account new

Place the password for that account in /home/ubuntu/scheduler_password.

You will also need to send this account a few ether. A few times the maximum
transaction cost should be sufficient as this account should always trend
upwards as it executes requests and receives payment for them.

Don’t forget to back up the key file! Go-Ethereum should have put it in

	/data/ethereum/keystore/

and Parity in

	/home/ubuntu/.local/share/io.parity.ethereum/keys/

8. Turn it on

Reload supervisord so that it finds the two new config files.

	sudo supervisord reload

You’ll want to wait for Go-Ethereum or Parity to fully sync with the network
before you start the scheduler-v8 process.

9. Monitoring

You can monitor these processes with tail

	tail -f /var/log/supervisor/geth*.log

	tail -f /var/log/supervisor/parity*.log

	tail -f /var/log/supervisor/scheduler-v8*.log

10. System Clock

You might want to add the following line to your crontab. This keeps your
system clock up to date. I’ve had issues with my servers drifting.

0 0 * * * /usr/sbin/ntpdate ntp.ubuntu.com

Changelog

0.8.0 (unreleased)

	Full rewrite of all contracts.

	Support for both time and block based scheduling.

	New permissionless call tracker now used to track scheduled calls.

	Donation address can now be configured.

	Request execution window size is now configurable.

	Reserved claim window size is now configurable.

	Freeze period is now configurable.

	Claim window size is now configurable.

	All payments now support pull mechanism for retrieving payments.

0.7.0

	Scheduled calls can now specify a required gas amount. This takes place of
the suggestedGas api from 0.6.0

	Scheduled calls can now send value along with the transaction.

	Calls now protect against stack depth attacks. This is configurable via the
requiredStackDepth option.

	Calls can now be scheduled as soon as 10 blocks in the future.

	Experimental implementation of market-based value for the defaultPayment

	scheduleCall now has 31 different call signatures.

0.6.0

	Each scheduled call now exists as it’s own contract, referred to as a call
contract.

	Removal of the Caller Pool

	Introduction of the claim api for call.

	Call Portability. Scheduled calls can now be trustlessly imported into
future versions of the service.

0.5.0

	Each scheduled call now exists as it’s own contract, referred to as a call
contract.

	The authorization API has been removed. It is now possible for the contract
being called to look up msg.sender on the scheduling contract and find
out who scheduled the call.

	The account management API has been removed. Each call contract now manages
it’s own gas money, the remainder of which is given back to the scheduler
after the call is executed.

	All of the information that used to be stored about the call execution is now
placed in event logs (gasUsed, wasSuccessful, wasCalled, etc)

0.4.0

	Convert Alarm service to use library contracts for all functionality.

	CallerPool contract API is now integrated into the Alarm API

0.3.0

	Convert Alarm service to use Grove [https://github.com/pipermerriam/ethereum-grove] for tracking scheduled call ordering.

	Enable logging most notable Alarm service events.

	Two additional convenience functions for invoking scheduleCall with
gracePeriod and nonce as optional parameters.

0.2.0

	Fix for Issue 42 [https://github.com/pipermerriam/ethereum-alarm-clock/issues/42]. Make the free-for-all bond bonus restrict itself to the
correct set of callers.

	Re-enable the right tree rotation in favor of removing three getLastX
function. This is related to the pi-million gas limit which is restricting
the code size of the contract.

0.1.0

	Initial release.

Index

 A
 | B
 | C
 | E
 | G
 | I
 | Q
 | R
 | S
 | T
 | V

A

 	
 	addRequest() (RequestTracker method)

B

 	
 	BlockScheduler (built-in class)

C

 	
 	callData() (TransactionRequest method)

 	cancel() (TransactionRequest method)

 	Cancelled() (TransactionRequest method)

 	
 	claim() (TransactionRequest method)

 	Claimed() (TransactionRequest method)

 	createRequest() (RequestFactory method)

 	createValidatedRequest() (RequestFactory method)

E

 	
 	execute() (TransactionRequest method)

 	
 	Executed() (TransactionRequest method)

G

 	
 	getNextRequest() (RequestTracker method)

 	
 	getPreviousRequest() (RequestTracker method)

 	getWindowStart() (RequestTracker method)

I

 	
 	isKnownRequest() (RequestFactory method)

 	(RequestTracker method)

Q

 	
 	query() (RequestTracker method)

R

 	
 	refundClaimDeposit() (TransactionRequest method)

 	removeRequest() (RequestTracker method)

 	RequestCreated() (RequestFactory method)

 	
 	requestData() (TransactionRequest method)

 	RequestFactory (built-in class)

 	RequestTracker (built-in class)

S

 	
 	Scheduler (built-in class)

 	scheduleTransaction() (Scheduler method), [1]

 	
 	sendDonation() (TransactionRequest method)

 	sendPayment() (TransactionRequest method)

T

 	
 	TimestampScheduler (built-in class)

 	
 	TransactionRequest (built-in class)

V

 	
 	validateRequestParams() (RequestFactory method)

 	
 	ValidationError() (RequestFactory method)

 _static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Ethereum Alarm Clock's documentation!

 		Introduction

 		What problem does this solve

 		How transactions are executed

 		Execution guarantees

 		How scheduling transactions works

 		Quickstart

 		Scheduling your first transaction

 		Architecture

 		Overview

 		RequestTracker

 		RequestFactory

 		BlockScheduler and TimestampScheduler

 		Transaction Request

 		Interface

 		Events

 		Data Model

 		Retrieving Data

 		Transaction Data

 		Payment Data

 		Claim Data

 		Schedule Data

 		Meta Data

 		Actions

 		Cancellation

 		Claiming

 		Execution

 		Retrieval of Ether

 		Returning the Claim Deposit

 		Retrieving the Payment

 		Retrieving the Donation

 		Return any extra Ether

 		Claiming

 		The Problem

 		The Solution

 		Claim Deposit

 		How claiming effects payment

 		Gas Costs

 		Execution

 		Important Windows of Blocks/Time

 		Freeze Window

 		The Execution Window

 		Reserved Execution Window

 		The Execution Lifecycle

 		Part 1: Validation

 		Part 2: Execution

 		Part 3: Accounting

 		Gas Multiplier

 		Sending the Execution Transaction

 		Gas Reimbursement

 		Minimum ExecutionGas

 		Request Factory

 		Introduction

 		Interface

 		Events

 		Function Arguments

 		Validation

 		Check #1: Insufficient Endowment

 		Check #2: Invalid Reserved Window

 		Check #3: Invalid Temporal Unit

 		Check #4: Execution Window Too Soon

 		Check #5: Invalid Stack Depth Check

 		Check #6: Call Gas too high

 		Check #7: Empty To Address

 		Creation of Transaction Requests

 		Tracking API

 		Request Tracker

 		Introduction

 		Interface

 		Database Structure

 		Chain of Trust

 		API

 		Request Factory

 		Introduction

 		Interface

 		Defaults

 		API

 		Endowments

 		CLI Interface

 		Requirements

 		Installation

 		The eth_alarm executable

 		Rollbar Integration

 		Running a server

 		1. Setup an EC2 Instance

 		2. Provision the Server

 		3. Mount the extra volume

 		4. Install Geth or Parity

 		5. Install the Alarm Client

 		6. Configure Supervisord

 		7. Generate an account

 		8. Turn it on

 		9. Monitoring

 		10. System Clock

 		Changelog

 		0.8.0 (unreleased)

 		0.7.0

 		0.6.0

 		0.5.0

 		0.4.0

 		0.3.0

 		0.2.0

 		0.1.0

_static/down-pressed.png

_static/comment.png

_static/plus.png

